profiling

Line by line profiling and code coverage
for GAP

2.6.2

21 June 2025
Christopher Jefferson

Christopher Jefferson
Email: caj21@st-andrews.ac.uk
Homepage: https://caj.host.cs.st-andrews.ac.uk/
Address: St Andrews
Scotland
UK

mailto://caj21@st-andrews.ac.uk
https://caj.host.cs.st-andrews.ac.uk/

Contents

1 Tutorial 3
1.1 Line-by-line profiling 3
1.2 FAQ/Problems e 4
1.3 Function-based profiling 4
2 Functionality provided by the profiling package 6
2.1 Reading line-by-lineprofiles, 6
2.2 Generating flame graphs oL Lo 6
2.3 Generating COverage répPortS v v v v v e e e e e e e e e e e e e 7
24 Miscellaneous e e e e e e 8
Index 10

Chapter 1

Tutorial

1.1 Line-by-line profiling

The purpose of this section is to show how to use GAP’s line-by-line profiling / code coverage. For
this, you need GAP 4.10 or newer.

Do you just care which lines of code are executed? Then you should switch to the coverage guide
(these two guides are very similar!)

We will start with a quick guide to profiling, with some brief comments. We will explain later how
to do these things in greater depth!

Let’s start with some code we want to profile. Here I am going to profile the function f given
below, and use a group from the AtlasRep package.

LoadPackage ("atlasrep");

a := AtlasGroup("U6(2)", NrMovedPoints, 12474);
b := a~(1,2,3);

f := function() Intersection(a,b); end;

Firstly, we will record a profile of the function £:

Code between ProfileLineByLine and UnprofilelLineByLine is recorded
to a file output.gz
ProfileLineByLine("output.gz"); f(); UnprofileLineByLine();

You should write this all on a single line in GAP, as profiling records the real time spent executing
code, so time spent typing commands will be counted.

This creates a file called output . gz, which stores the result of running £f. Now we want to turn
that into a nice output. This requires loading the profiling package, like this:

LoadPackage ("profiling");
OutputAnnotatedCodeCoverageFiles("output.gz", "outdir");

If loading the profiling package produces errors, make sure you have compiled both the profiling
and O packages.

OutputAnnotatedCodeCoverageFiles (2.3.1) reads the previously created output . gz and pro-
duces HTML output into the directory outdir.

profiling 4

You must view the result of your profiling in a web-browser outside of GAP. Open index.html
from the outdir directory in the web browser of your choice to see what happened.

At the very top is a link to a flame graph. These give a quick overview of which functions took the
most time. Functions are stacked, so lower functions call higher functions.

From this graph we can see that f called Intersection (Reference: Intersection), which called
the function Intersection2 perm groups near line 2950 in stbcbckt.gi. This function spent
most of its time in PartitionBacktrack, and a little time in Stabilizer.

Whenever you generate a profile which contains timing information, a flame graph link will be
show on the first page of your generated profile!

1.2 FAQ/Problems

* ProfileLineByLine (Reference: ProfileLineByLine) records the wall time (also known as
clock time) that occurs between ProfileLineByLine (Reference: ProfileLineByLine) and
the next UnprofileLineByLine (Reference: UnprofileLineByLine). This is why we start
profiling, run our code, and then stop profiling all on a single line.

* If you want to profile how long everything in GAP takes, including the startup, then you can do
this by giving the command line option --prof filename when starting GAP. This is equiv-
alent to GAP calling ProfileLineByLine("filename") ; before loading any of the standard
library (obviously, give your own filename).

* Giving your output file the gz extension makes GAP automatically compress the file. This is a
great idea, because the files can get very big otherwise! Even then, the files can grow quite large
very quickly, keep an eye on them.

* ProfileLineByLine (Reference: ProfileLineByLine) takes an optional second argument
which is a record, which can set some configuration options. Here are some of the options:

* wallTime: Boolean (defaults to true). Sets if time should be measured using wall-clock time
(true) or CPU time (false). Measuring CPU-time has a higher overhead, so avoid it if at all
possible!

* resolution: Integer (defaults to 0). By default GAP will record a trace of all executed
code. When non-zero, GAP instead samples which piece of code is being executed every
resolution nanoseconds. Setting this to a non-zero value improves performance and pro-
duces smaller traces, at the cost of accuracy. GAP will still accurately record which statements
are executed at least once. This is mainly useful when you wish to consider very long-running
code.

1.3 Function-based profiling

Sometimes you will have code that just runs too long to easily profile line-by-line. You can profile this
in GAP’s older function-based profiler. You can read more about this profiler in GAP’s documentation
((Reference: Profiling)), but here is a quick example to get you going!

profiling

ProfileGlobalFunctions (true);
ProfileOperationsAndMethods (true) ;
£03
ProfileGlobalFunctions(false);
ProfileOperationsAndMethods(false);
DisplayProfile();

Chapter 2

Functionality provided by the profiling
package

2.1 Reading line-by-line profiles
2.1.1 ReadLineByLineProfile

> ReadLineByLineProfile(filename) (function)

Read filename, a line-by-line profile which was previously generated by GAP, using
the ProfileLineByLine (Reference: ProfileLineByLine) or CoverageLineByLine (Reference:
CoverageLineByLine) functions from core GAP. A parsed profile can be transformed
into a human-readable form using either OutputAnnotatedCodeCoverageFiles (2.3.1) or
OutputFlameGraph (2.2.1)

2.1.2 MergeLineByLineProfiles

> MergelineByLineProfiles(filenames) (function)
Read filenames, a list of line-by-line profiles which were previously generated by GAP, using

the ProfileLineByLine (Reference: ProfileLineByLine) or CoverageLineByLine (Reference:

CoverageLineByLine) functions from core GAP. The elements of filenames can be either file-
names, or files previously parsed by ReadLineByLineProfile (2.1.1).

2.2 Generating flame graphs

A ’flame graph’ is a method of visualising where time is spent by a program.

2.2.1 OutputFlameGraph

> OutputFlameGraph(profile[, filename][, options]) (function)

Generate an ’svg’ file which represents a ’flame graph’, a method of visualising where time is
spent by a program.

profiling 7

profile should be either a profile previously read by ReadLineByLineProfile (2.1.1), or a
string giving the filename of a profile.

The flame graph will be written to filename (or returned as a string if £ilename is not present).

The final (optional) argument is a record of options. Currently, the allowed options are ’squash’
(which is a boolean). If ’squash’ is true then recursive functions calls will be squashed, so the graph
will not show recursive functions calling themselves. The other allowed option is "type’, which can be
"default" (a standard flamegraph) or "reverse" (reverse the graph, showing the leaf functions first)

2.2.2 OutputFlameGraphlnput

> OutputFlameGraphInput (profile[, filename]) (function)

Generate the input required to draw a ’flame graph’, a method of visualising where time is
spent by a program. One program for drawing flame graphs using this output can be found at
https://github.com/brendangregg/FlameGraph.

profile should be either a profile previously read by ReadLineByLineProfile (2.1.1), or a
string giving the filename of a profile.

The flame graph input will be written to filename (or returned as a string if filename is not
present).

2.3 Generating coverage reports

2.3.1 OutputAnnotatedCodeCoverageFiles

> OutputAnnotatedCodeCoverageFiles(coverage[, indir], outdir[, options]) (func-

tion)

Takes a previously generated profile and outputs HTML which shows the lines of code that were
executed, and (if this was originally recorded) how long was spent executing these lines of code.

coverage should be either a profile previously read by ReadLineByLineProfile (2.1.1), or a
string giving the filename of a profile which will first be read with ReadLineByLineProfile.

Files will be written to the directory outdir.

The optional second argument gives a filter, only information about filenames starting with indir
will be outputted.

The final optional argument is a record of configuration options. The only currently allowed option
is ’title’, which will set the title of created pages.

2.3.2 OutputJsonCoverage

> OutputJsonCoverage(coverage, outfile) (function)

Takes a previously generated profile and outputs a json coverage file which is amongst other things
accepted by codecov.io.

coverage should be either a profile previously read by ReadLineByLineProfile (2.1.1), or a
string giving the filename of a profile which will first be read with ReadLineByLineProfile.

The output will be written to the file with name outfile (a string).

https://github.com/brendangregg/FlameGraph
codecov.io

profiling 8

2.3.3 OutputLcovCoverage

> OutputLcovCoverage (coverage, outfile) (function)

Takes a previously generated profile and outputs an Icov coverage file.

coverage should be either a profile previously read by ReadLineByLineProfile (2.1.1), or the
filename of a profile which will first be read with ReadLineByLineProfile.

The output will be written to the file with name outfile (a string).

2.3.4 OutputCoverallsJsonCoverage

> OutputCoverallsJsonCoverage(coverage, outfile, pathtoremovel[, opt]) (function)

Takes a previously generated profile and outputs a json coverage file which is accepted by
coveralls.io.

coverage should be either a profile previously read by ReadLineByLineProfile (2.1.1), or
a string giving the filename of a profile which will first be read with ReadLineByLineProfile.
pathtoremove is the path to the tested repository; this path prefix will be removed from all filenames
in coverage. Finally, opt is arecord. Its key/value pairs are directly inserted into the produced JSON,
in the form of a JSON dictionary. This can be used to set the service_name, service_job_id, and
more. If this record is not given, we try to guess the correct values based on the environment (currently
only supported for Travis and App Veyor).

The output will be written to the file with name outfile (a string).

2.4 Miscellaneous

2.4.1 LineByLineProfileFunction

> LineByLineProfileFunction(function, arguments) (function)

Calls function with the list of arguments arguments, and opens a time profile of the resulting
call in the default web browser.

2.4.2 ProfileFile

> ProfileFile(file[, opts]) (function)

Returns: a string

Tests the file with name file in another GAP session, and produces a code coverage report of
lines that were executed in the process. If file ends with . tst it will be called with Test; otherwise,
it will be run directly.

The optional argument opts should be a record, and may contain any of the following compo-
nents:

* outdir: a string denoting the directory into which the HTML files of the report will be placed
(a temporary directory by default);

* indir: a string such that only file paths beginning with indir will be profiled (default "");

* showOutput: a boolean denoting whether to print test output to the screen (default true);

coveralls.io

profiling 9

* open: a boolean denoting whether to open the report in a web browser on completion (default
false).

This function returns the location of an HTML file containing the report.

2.4.3 ProfilePackage

> ProfilePackage(pkg_name[, opts]) (function)
Returns: a string
If pkg_name is the name of an installed package, then this function runs that package’s test suite
and produces a report on the code coverage of files inside the package. The string returned denotes
the location of an HTML file containing the report. The optional argument opts behaves the same as
in ProfileFile (2.4.2).

Index

LineByLineProfileFunction, 8
MergeLineByLineProfiles, 6

OutputAnnotatedCodeCoverageFiles, 7
OutputCoverallsJsonCoverage, 8
OutputFlameGraph, 6
OutputFlameGraphInput, 7
OutputJsonCoverage, 7
OutputLcovCoverage, 8

ProfileFile, 8
ProfilePackage, 9

ReadLineByLineProfile, 6

10

	Tutorial
	Line45by45line profiling
	FAQ / Problems
	Function45based profiling

	Functionality provided by the profiling package
	Reading line45by45line profiles
	Generating flame graphs
	Generating coverage reports
	Miscellaneous

	Index

