ROL
Public Member Functions | Private Types | Private Attributes | List of all members
OptDualStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for OptDualStdVector< Real, Element >:

Public Member Functions

 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Element > > getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Element > > getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
void applyUnary (const ROL::Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const ROL::Elementwise::BinaryFunction< Real > &f, const ROL::Vector< Real > &x)
 
Real reduce (const ROL::Elementwise::ReductionOp< Real > &r) const
 
 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Element > > getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
 OptDualStdVector (const ROL::Ptr< std::vector< Element > > &std_vec, ROL::Ptr< FiniteDifference< Real > >fd)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Element > > getVector () const
 
ROL::Ptr< std::vector< Element > > getVector ()
 
ROL::Ptr< Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void plus (const Vector &x)=0
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
virtual void scale (const Real alpha)=0
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
virtual Real dot (const Vector &x) const =0
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
virtual Real norm () const =0
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
virtual ROL::Ptr< Vectorclone () const =0
 Clone to make a new (uninitialized) vector.
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).
 
virtual void zero ()
 Set to zero vector.
 
virtual ROL::Ptr< Vectorbasis (const int i) const
 Return i-th basis vector.
 
virtual int dimension () const
 Return dimension of the vector space.
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
virtual const Vectordual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
virtual Real apply (const Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual void print (std::ostream &outStream) const
 
virtual void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).
 
virtual void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u].
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods.
 

Private Types

typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef ROL::Vector< Real > V
 
typedef vector::size_type uint
 
typedef std::vector< Element > vector
 
typedef vector::size_type uint
 

Private Attributes

ROL::Ptr< std::vector< Element > > std_vec_
 
ROL::Ptr< OptStdVector< Real > > dual_vec_
 
ROL::Ptr< FiniteDifference< Real > > fd_
 

Detailed Description

template<class Real, class Element>
class OptDualStdVector< Real, Element >

Definition at line 209 of file gross-pitaevskii/example_02.hpp.

Member Typedef Documentation

◆ vector [1/4]

template<class Real , class Element >
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

Definition at line 169 of file dual-spaces/rosenbrock-1/example_01.cpp.

◆ V [1/3]

template<class Real , class Element >
typedef ROL::Vector<Real> OptDualStdVector< Real, Element >::V
private

Definition at line 170 of file dual-spaces/rosenbrock-1/example_01.cpp.

◆ uint [1/4]

template<class Real , class Element >
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

Definition at line 172 of file dual-spaces/rosenbrock-1/example_01.cpp.

◆ vector [2/4]

template<class Real , class Element >
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

Definition at line 191 of file dual-spaces/rosenbrock-1/example_02.cpp.

◆ V [2/3]

template<class Real , class Element >
typedef ROL::Vector<Real> OptDualStdVector< Real, Element >::V
private

Definition at line 192 of file dual-spaces/rosenbrock-1/example_02.cpp.

◆ uint [2/4]

template<class Real , class Element >
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

Definition at line 194 of file dual-spaces/rosenbrock-1/example_02.cpp.

◆ vector [3/4]

template<class Real , class Element >
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

◆ V [3/3]

template<class Real , class Element >
typedef ROL::Vector<Real> OptDualStdVector< Real, Element >::V
private

◆ uint [3/4]

template<class Real , class Element >
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

◆ vector [4/4]

template<class Real , class Element >
typedef std::vector<Element> OptDualStdVector< Real, Element >::vector
private

Definition at line 211 of file gross-pitaevskii/example_02.hpp.

◆ uint [4/4]

template<class Real , class Element >
typedef vector::size_type OptDualStdVector< Real, Element >::uint
private

Definition at line 212 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

◆ OptDualStdVector() [1/4]

template<class Real , class Element >
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 180 of file dual-spaces/rosenbrock-1/example_01.cpp.

◆ OptDualStdVector() [2/4]

template<class Real , class Element >
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

Definition at line 202 of file dual-spaces/rosenbrock-1/example_02.cpp.

◆ OptDualStdVector() [3/4]

template<class Real , class Element >
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec)
inline

◆ OptDualStdVector() [4/4]

template<class Real , class Element >
OptDualStdVector< Real, Element >::OptDualStdVector ( const ROL::Ptr< std::vector< Element > > &  std_vec,
ROL::Ptr< FiniteDifference< Real > >  fd 
)
inline

Definition at line 221 of file gross-pitaevskii/example_02.hpp.

Member Function Documentation

◆ plus() [1/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 182 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ scale() [1/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 192 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

◆ dot() [1/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 199 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

Referenced by OptDualStdVector< Real, Element >::norm().

◆ norm() [1/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 210 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dot().

◆ clone() [1/4]

template<class Real , class Element >
ROL::Ptr< ROL::Vector< Real > > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Implements ROL::Vector< Real >.

Definition at line 216 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ getVector() [1/8]

template<class Real , class Element >
ROL::Ptr< const std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( ) const
inline

◆ getVector() [2/8]

template<class Real , class Element >
ROL::Ptr< std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( )
inline

◆ basis() [1/4]

template<class Real , class Element >
ROL::Ptr< ROL::Vector< Real > > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 228 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ dimension() [1/4]

template<class Real , class Element >
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 237 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

Referenced by OptDualStdVector< Real, Element >::apply(), OptDualStdVector< Real, Element >::dot(), OptDualStdVector< Real, Element >::plus(), and OptDualStdVector< Real, Element >::scale().

◆ dual() [1/4]

template<class Real , class Element >
const ROL::Vector< Real > & OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 239 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dual_vec_.

◆ apply() [1/3]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 244 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ plus() [2/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 204 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ scale() [2/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 214 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

◆ dot() [2/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 221 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ norm() [2/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 232 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dot().

◆ clone() [2/4]

template<class Real , class Element >
ROL::Ptr< ROL::Vector< Real > > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Implements ROL::Vector< Real >.

Definition at line 238 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ getVector() [3/8]

template<class Real , class Element >
ROL::Ptr< const std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( ) const
inline

◆ getVector() [4/8]

template<class Real , class Element >
ROL::Ptr< std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( )
inline

◆ basis() [2/4]

template<class Real , class Element >
ROL::Ptr< ROL::Vector< Real > > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 250 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ dimension() [2/4]

template<class Real , class Element >
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 259 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ dual() [2/4]

template<class Real , class Element >
const ROL::Vector< Real > & OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 261 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dual_vec_.

◆ apply() [2/3]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 266 of file dual-spaces/rosenbrock-1/example_02.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ applyUnary()

template<class Real , class Element >
void OptDualStdVector< Real, Element >::applyUnary ( const ROL::Elementwise::UnaryFunction< Real > &  f)
inline

◆ applyBinary()

template<class Real , class Element >
void OptDualStdVector< Real, Element >::applyBinary ( const ROL::Elementwise::BinaryFunction< Real > &  f,
const ROL::Vector< Real > &  x 
)
inline

◆ reduce()

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::reduce ( const ROL::Elementwise::ReductionOp< Real > &  r) const
inline

◆ plus() [3/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 188 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ scale() [3/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 197 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

◆ dot() [3/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 204 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ norm() [3/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 215 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dot().

◆ clone() [3/4]

template<class Real , class Element >
ROL::Ptr< ROL::Vector< Real > > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Implements ROL::Vector< Real >.

Definition at line 221 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ getVector() [5/8]

template<class Real , class Element >
ROL::Ptr< const std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( ) const
inline

◆ getVector() [6/8]

template<class Real , class Element >
ROL::Ptr< std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( )
inline

◆ basis() [3/4]

template<class Real , class Element >
ROL::Ptr< ROL::Vector< Real > > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 233 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ dimension() [3/4]

template<class Real , class Element >
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 241 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ dual() [3/4]

template<class Real , class Element >
const ROL::Vector< Real > & OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 243 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dual_vec_.

◆ apply() [3/3]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::apply ( const ROL::Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 248 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ plus() [4/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 224 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ scale() [4/4]

template<class Real , class Element >
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 233 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

◆ dot() [4/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 240 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::fd_, OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

◆ norm() [4/4]

template<class Real , class Element >
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 254 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::dot().

◆ clone() [4/4]

template<class Real , class Element >
ROL::Ptr< Vector< Real > > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Implements ROL::Vector< Real >.

Definition at line 260 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::fd_, and OptDualStdVector< Real, Element >::std_vec_.

◆ getVector() [7/8]

template<class Real , class Element >
ROL::Ptr< const std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( ) const
inline

◆ getVector() [8/8]

template<class Real , class Element >
ROL::Ptr< std::vector< Element > > OptDualStdVector< Real, Element >::getVector ( )
inline

◆ basis() [4/4]

template<class Real , class Element >
ROL::Ptr< Vector< Real > > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 272 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::fd_, and OptDualStdVector< Real, Element >::std_vec_.

◆ dimension() [4/4]

template<class Real , class Element >
int OptDualStdVector< Real, Element >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 279 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::std_vec_.

◆ dual() [4/4]

template<class Real , class Element >
const Vector< Real > & OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 281 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::dual_vec_, OptDualStdVector< Real, Element >::fd_, and OptDualStdVector< Real, Element >::std_vec_.

Member Data Documentation

◆ std_vec_

template<class Real , class Element >
ROL::Ptr< std::vector< Element > > OptDualStdVector< Real, Element >::std_vec_
private

◆ dual_vec_

template<class Real , class Element >
ROL::Ptr< OptStdVector< Real > > OptDualStdVector< Real, Element >::dual_vec_
mutableprivate

◆ fd_

template<class Real , class Element >
ROL::Ptr<FiniteDifference<Real> > OptDualStdVector< Real, Element >::fd_
private

The documentation for this class was generated from the following files: