Intrepid2
Intrepid2_ProjectedGeometry.hpp
Go to the documentation of this file.
1// @HEADER
2// ************************************************************************
3//
4// Intrepid2 Package
5// Copyright (2007) Sandia Corporation
6//
7// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8// license for use of this work by or on behalf of the U.S. Government.
9//
10// Redistribution and use in source and binary forms, with or without
11// modification, are permitted provided that the following conditions are
12// met:
13//
14// 1. Redistributions of source code must retain the above copyright
15// notice, this list of conditions and the following disclaimer.
16//
17// 2. Redistributions in binary form must reproduce the above copyright
18// notice, this list of conditions and the following disclaimer in the
19// documentation and/or other materials provided with the distribution.
20//
21// 3. Neither the name of the Corporation nor the names of the
22// contributors may be used to endorse or promote products derived from
23// this software without specific prior written permission.
24//
25// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36//
37// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov),
38// Mauro Perego (mperego@sandia.gov), or
39// Nate Roberts (nvrober@sandia.gov),
40//
41// ************************************************************************
42// @HEADER
43
49#ifndef Intrepid2_ProjectedGeometry_h
50#define Intrepid2_ProjectedGeometry_h
51
52#include "Intrepid2_ScalarView.hpp"
53
54#include "Intrepid2_Basis.hpp"
58
60
61namespace Intrepid2
62{
66 template<int spaceDim, typename PointScalar, typename DeviceType>
68 {
69 public:
70 using ViewType = ScalarView< PointScalar, DeviceType>;
71 using ConstViewType = ScalarView<const PointScalar, DeviceType>;
72 using BasisPtr = Teuchos::RCP< Basis<DeviceType,PointScalar,PointScalar> >;
73
83 template<class ExactGeometry, class ExactGeometryGradient>
84 static void projectOntoHGRADBasis(ViewType projectedBasisNodes, BasisPtr targetHGradBasis, CellGeometry<PointScalar,spaceDim,DeviceType> flatCellGeometry,
85 const ExactGeometry &exactGeometry, const ExactGeometryGradient &exactGeometryGradient)
86 {
87 const ordinal_type numCells = flatCellGeometry.extent_int(0); // (C,N,D)
88
89 INTREPID2_TEST_FOR_EXCEPTION(spaceDim != targetHGradBasis->getBaseCellTopology().getDimension(), std::invalid_argument, "spaceDim must match the cell topology on which target basis is defined");
90 INTREPID2_TEST_FOR_EXCEPTION(projectedBasisNodes.rank() != 3, std::invalid_argument, "projectedBasisNodes must have shape (C,F,D)");
91 INTREPID2_TEST_FOR_EXCEPTION(projectedBasisNodes.extent_int(0) != numCells, std::invalid_argument, "cell counts must match in projectedBasisNodes and cellNodesToMap");
92 INTREPID2_TEST_FOR_EXCEPTION(projectedBasisNodes.extent_int(1) != targetHGradBasis->getCardinality(), std::invalid_argument, "projectedBasisNodes must have shape (C,F,D)");
93 INTREPID2_TEST_FOR_EXCEPTION(projectedBasisNodes.extent_int(2) != spaceDim, std::invalid_argument, "projectedBasisNodes must have shape (C,F,D)");
94
95 using ExecutionSpace = typename DeviceType::execution_space;
96 using ProjectionTools = Experimental::ProjectionTools<ExecutionSpace>; // TODO: when ProjectionTools supports it, replace template argument with DeviceType
97 using ProjectionStruct = Experimental::ProjectionStruct<ExecutionSpace,PointScalar>; // TODO: when ProjectionTools supports it, replace template argument with DeviceType
98
99 ProjectionStruct projectionStruct;
100 ordinal_type targetQuadratureDegree(targetHGradBasis->getDegree()), targetDerivativeQuadratureDegree(targetHGradBasis->getDegree());
101 projectionStruct.createHGradProjectionStruct(targetHGradBasis, targetQuadratureDegree, targetDerivativeQuadratureDegree);
102
103 const ordinal_type numPoints = projectionStruct.getNumTargetEvalPoints();
104 const ordinal_type numGradPoints = projectionStruct.getNumTargetDerivEvalPoints();
105
106 ViewType evaluationPointsRefSpace ("ProjectedGeometry evaluation points ref space (value)", numCells, numPoints, spaceDim);
107 ViewType evaluationGradPointsRefSpace("ProjectedGeometry evaluation points ref space (gradient)", numCells, numGradPoints, spaceDim);
108
109 auto elementOrientations = flatCellGeometry.getOrientations();
110 ProjectionTools::getHGradEvaluationPoints(evaluationPointsRefSpace, evaluationGradPointsRefSpace, elementOrientations, targetHGradBasis.get(), &projectionStruct);
111
112// printFunctor1(elementOrientations, std::cout);
113
114 // the evaluation points are all still in reference space; map to physical space:
115 ViewType evaluationPoints ("ProjectedGeometry evaluation points (value)", numCells, numPoints, spaceDim);
116 ViewType evaluationGradPoints("ProjectedGeometry evaluation points (gradient)", numCells, numGradPoints, spaceDim);
117
119 BasisPtr hgradLinearBasisForFlatGeometry = flatCellGeometry.basisForNodes();
120 if (numPoints > 0)
121 {
122 CellTools::mapToPhysicalFrame(evaluationPoints, evaluationPointsRefSpace, flatCellGeometry, hgradLinearBasisForFlatGeometry);
123 }
124 if (numGradPoints > 0)
125 {
126 CellTools::mapToPhysicalFrame(evaluationGradPoints, evaluationGradPointsRefSpace, flatCellGeometry, hgradLinearBasisForFlatGeometry);
127 }
128
129 auto refData = flatCellGeometry.getJacobianRefData(evaluationGradPoints);
130
131 // evaluate, transform, and project in each component
132 auto policy = Kokkos::MDRangePolicy<ExecutionSpace,Kokkos::Rank<2>>({0,0}, {numCells,numPoints});
133 auto gradPolicy = Kokkos::MDRangePolicy<ExecutionSpace,Kokkos::Rank<3>>({0,0,0},{numCells,numGradPoints,spaceDim});
134
135 ViewType evaluationValues ("exact geometry values", numCells, numPoints);
136 ViewType evaluationGradients ("exact geometry gradients", numCells, numGradPoints, spaceDim);
137
138// printView(evaluationPoints, std::cout, "evaluationPoints");
139
140 for (int comp=0; comp<spaceDim; comp++)
141 {
142 Kokkos::parallel_for("evaluate geometry function for projection", policy,
143 KOKKOS_LAMBDA (const int &cellOrdinal, const int &pointOrdinal) {
144 Kokkos::Array<PointScalar,spaceDim> point;
145 for (int d=0; d<spaceDim; d++)
146 {
147 point[d] = evaluationPoints(cellOrdinal,pointOrdinal,d);
148 }
149 evaluationValues(cellOrdinal,pointOrdinal) = exactGeometry(point,comp);
150 });
151
152// printView(evaluationValues, std::cout, "evaluationValues");
153
154 // projection occurs in ref space, so we need to apply inverse of the pullback
155 // HGRADtransformVALUE is identity, so evaluationValues above is correct
156 // HGRADtransformGRAD is multiplication by inverse of Jacobian, so here we want to multiply by Jacobian
157
158 auto gradPointsJacobians = flatCellGeometry.allocateJacobianData(evaluationGradPoints);
159 flatCellGeometry.setJacobian(gradPointsJacobians,evaluationGradPoints,refData);
160
161 Kokkos::parallel_for("evaluate geometry gradients for projection", gradPolicy,
162 KOKKOS_LAMBDA (const int &cellOrdinal, const int &pointOrdinal, const int &d2) {
163 Kokkos::Array<PointScalar,spaceDim> point;
164 for (int d=0; d<spaceDim; d++)
165 {
166 point[d] = evaluationGradPoints(cellOrdinal,pointOrdinal,d);
167 }
168 evaluationGradients(cellOrdinal,pointOrdinal,d2) = exactGeometryGradient(point,comp,d2);
169 });
170
171 // apply Jacobian
172 Data<PointScalar,DeviceType> gradientData(evaluationGradients);
173 auto transformedGradientData = Data<PointScalar,DeviceType>::allocateMatVecResult(gradPointsJacobians,gradientData);
174
175 transformedGradientData.storeMatVec(gradPointsJacobians,gradientData);
176
177 auto projectedBasisNodesForComp = Kokkos::subview(projectedBasisNodes,Kokkos::ALL(),Kokkos::ALL(),comp);
178
179 ProjectionTools::getHGradBasisCoeffs(projectedBasisNodesForComp,
180 evaluationValues,
181 transformedGradientData.getUnderlyingView(),
182 evaluationPointsRefSpace,
183 evaluationGradPointsRefSpace,
184 elementOrientations,
185 targetHGradBasis.get(),
186 &projectionStruct);
187 }
188 }
189 };
190}
191
192#endif /* Intrepid2_ProjectedGeometry_h */
Header file for the abstract base class Intrepid2::Basis.
Allows definition of cell geometry information, including uniform and curvilinear mesh definition,...
Header file for the Intrepid2::CellTools class.
Header file for the Intrepid2::Experimental::ProjectionTools.
Utility methods for Intrepid2 unit tests.
CellGeometry provides the nodes for a set of cells; has options that support efficient definition of ...
BasisPtr basisForNodes() const
H^1 Basis used in the reference-to-physical transformation. Linear for straight-edged geometry; highe...
void setJacobian(Data< PointScalar, DeviceType > &jacobianData, const TensorPoints< PointScalar, DeviceType > &points, const Data< PointScalar, DeviceType > &refData, const int startCell=0, const int endCell=-1) const
Compute Jacobian values for the reference-to-physical transformation, and place them in the provided ...
Data< PointScalar, DeviceType > getJacobianRefData(const ScalarView< PointScalar, DeviceType > &points) const
Computes reference-space data for the specified points, to be used in setJacobian().
Data< PointScalar, DeviceType > allocateJacobianData(const TensorPoints< PointScalar, DeviceType > &points, const int startCell=0, const int endCell=-1) const
Allocate a container into which Jacobians of the reference-to-physical mapping can be placed.
Data< Orientation, DeviceType > getOrientations()
Returns the orientations for all cells. Calls initializeOrientations() if it has not previously been ...
KOKKOS_INLINE_FUNCTION std::enable_if< std::is_integral< iType >::value, int >::type extent_int(const iType &r) const
Returns the logical extent of the container in the specified dimension as an int; the shape of CellGe...
A stateless class for operations on cell data. Provides methods for:
static void mapToPhysicalFrame(Kokkos::DynRankView< physPointValueType, physPointProperties... > physPoints, const Kokkos::DynRankView< refPointValueType, refPointProperties... > refPoints, const WorksetType worksetCell, const HGradBasisPtrType basis)
Computes F, the reference-to-physical frame map.
Wrapper around a Kokkos::View that allows data that is constant or repeating in various logical dimen...
static Data< DataScalar, DeviceType > allocateMatVecResult(const Data< DataScalar, DeviceType > &matData, const Data< DataScalar, DeviceType > &vecData)
An helper class to compute the evaluation points and weights needed for performing projections.
A class providing static members to perform projection-based interpolations:
Allows generation of geometry degrees of freedom based on a provided map from straight-edged mesh dom...
static void projectOntoHGRADBasis(ViewType projectedBasisNodes, BasisPtr targetHGradBasis, CellGeometry< PointScalar, spaceDim, DeviceType > flatCellGeometry, const ExactGeometry &exactGeometry, const ExactGeometryGradient &exactGeometryGradient)
Generate geometry degrees of freedom based on a provided map from straight-edged mesh domain to curvi...