Stokhos Package Browser (Single Doxygen Collection) Version of the Day
|
Bases defined by combinatorial product of polynomial bases. More...
#include <Stokhos_StochasticProductTensor.hpp>
Public Types | |
typedef Device | execution_space |
typedef ValueType | value_type |
typedef TensorType | tensor_type |
typedef tensor_type::size_type | size_type |
Public Member Functions | |
~StochasticProductTensor () | |
StochasticProductTensor () | |
StochasticProductTensor (const StochasticProductTensor &rhs) | |
StochasticProductTensor & | operator= (const StochasticProductTensor &rhs) |
KOKKOS_INLINE_FUNCTION const tensor_type & | tensor () const |
KOKKOS_INLINE_FUNCTION size_type | dimension () const |
Dimension: number of bases and length of the vector block (and tensor). | |
KOKKOS_INLINE_FUNCTION size_type | aligned_dimension () const |
Aligned dimension: length of the vector block properly aligned. | |
KOKKOS_INLINE_FUNCTION size_type | variable_count () const |
How many variables are being expanded. | |
template<typename iType > | |
KOKKOS_INLINE_FUNCTION size_type | variable_degree (const iType &iVariable) const |
Polynomial degree of a given variable. | |
template<typename iType , typename jType > | |
KOKKOS_INLINE_FUNCTION size_type | bases_degree (const iType &iBasis, const jType &iVariable) const |
Basis function 'iBasis' is the product of 'variable_count()' polynomials. Return the polynomial degree of component 'iVariable'. | |
void | print (std::ostream &s) const |
Static Public Member Functions | |
template<typename OrdinalType , typename CijkType > | |
static StochasticProductTensor | create (const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const CijkType &Cijk, const Teuchos::ParameterList ¶ms=Teuchos::ParameterList()) |
Private Attributes | |
tensor_type | m_tensor |
Kokkos::View< size_type **, execution_space > | m_degree_map |
size_type | m_variable |
Bases defined by combinatorial product of polynomial bases.
Bases: \prod_{j=0}^{N-1} P_k(x) \forall j and k \in M(j) Where: P_k is a polynomial of degree k Where: <P_a,P_b> is the the integral on [-1,1] Where: <P_a,P_b> is the Kronecker delta \delta_{a,b} thus the polynomials are normalized with respect to this inner product.
Where: N = the number of variables expanded via polynomial bases Where: M(j) = the degree of a particular variable
Where: \psi_I(x) = is one basis function and I is a multi-index of rank N, denoting one function from each variable's polynomial bases.
Were: <\psi_I,\psi_J,\psi_K> is the integral on [-1,1]
The bases space is sparse due to orthogonality within the expansion.
Definition at line 78 of file Stokhos_StochasticProductTensor.hpp.
typedef Device Stokhos::StochasticProductTensor< ValueType, TensorType, Device >::execution_space |
Definition at line 81 of file Stokhos_StochasticProductTensor.hpp.
typedef ValueType Stokhos::StochasticProductTensor< ValueType, TensorType, Device >::value_type |
Definition at line 82 of file Stokhos_StochasticProductTensor.hpp.
typedef TensorType Stokhos::StochasticProductTensor< ValueType, TensorType, Device >::tensor_type |
Definition at line 83 of file Stokhos_StochasticProductTensor.hpp.
typedef tensor_type::size_type Stokhos::StochasticProductTensor< ValueType, TensorType, Device >::size_type |
Definition at line 84 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Definition at line 95 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Definition at line 98 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Definition at line 105 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Definition at line 112 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Definition at line 121 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Dimension: number of bases and length of the vector block (and tensor).
Definition at line 127 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Aligned dimension: length of the vector block properly aligned.
Definition at line 132 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
How many variables are being expanded.
Definition at line 146 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Polynomial degree of a given variable.
Definition at line 151 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Basis function 'iBasis' is the product of 'variable_count()' polynomials. Return the polynomial degree of component 'iVariable'.
Definition at line 160 of file Stokhos_StochasticProductTensor.hpp.
|
inline |
Definition at line 163 of file Stokhos_StochasticProductTensor.hpp.
|
inlinestatic |
Definition at line 176 of file Stokhos_StochasticProductTensor.hpp.
|
private |
Definition at line 88 of file Stokhos_StochasticProductTensor.hpp.
|
private |
Definition at line 89 of file Stokhos_StochasticProductTensor.hpp.
|
private |
Definition at line 90 of file Stokhos_StochasticProductTensor.hpp.