ROL
ROL_Cantilever.hpp
Go to the documentation of this file.
1// @HEADER
2// ************************************************************************
3//
4// Rapid Optimization Library (ROL) Package
5// Copyright (2014) Sandia Corporation
6//
7// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8// license for use of this work by or on behalf of the U.S. Government.
9//
10// Redistribution and use in source and binary forms, with or without
11// modification, are permitted provided that the following conditions are
12// met:
13//
14// 1. Redistributions of source code must retain the above copyright
15// notice, this list of conditions and the following disclaimer.
16//
17// 2. Redistributions in binary form must reproduce the above copyright
18// notice, this list of conditions and the following disclaimer in the
19// documentation and/or other materials provided with the distribution.
20//
21// 3. Neither the name of the Corporation nor the names of the
22// contributors may be used to endorse or promote products derived from
23// this software without specific prior written permission.
24//
25// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36//
37// Questions? Contact lead developers:
38// Drew Kouri (dpkouri@sandia.gov) and
39// Denis Ridzal (dridzal@sandia.gov)
40//
41// ************************************************************************
42// @HEADER
43
49#ifndef USE_HESSVEC
50#define USE_HESSVEC 1
51#endif
52
53#ifndef ROL_CANTILEVER_HPP
54#define ROL_CANTILEVER_HPP
55
57#include "ROL_StdObjective.hpp"
58#include "ROL_StdConstraint.hpp"
59#include "ROL_TestProblem.hpp"
60
61namespace ROL {
62namespace ZOO {
63
64 template<class Real>
65 class Objective_Cantilever : public StdObjective<Real> {
66 public:
68
69 Real value( const std::vector<Real> &x, Real &tol ) {
70 return x[0]*x[1];
71 }
72
73 void gradient( std::vector<Real> &g, const std::vector<Real> &x, Real &tol ) {
74 g[0] = x[1];
75 g[1] = x[0];
76 }
77#if USE_HESSVEC
78 void hessVec( std::vector<Real> &hv, const std::vector<Real> &v, const std::vector<Real> &x, Real &tol ) {
79 hv[0] = v[1];
80 hv[1] = v[0];
81 }
82#endif
83 };
84
85 template<class Real>
86 class Constraint_Cantilever : public StdConstraint<Real> {
87 private:
88 Real stress(const Real w, const Real t, const int deriv = 0, const int comp1 = 0, const int comp2 = 0) const {
89 const Real scale(600), X(500), Y(1000);
90 Real val(0);
91 if (deriv == 0) {
92 val = scale*(Y/(w*t*t) + X/(w*w*t));
93 }
94 else if (deriv == 1) {
95 if (comp1 == 0) {
96 const Real two(2);
97 val = scale*(-Y/(w*w*t*t) - two*X/(w*w*w*t));
98 }
99 else if (comp1 == 1) {
100 const Real two(2);
101 val = scale*(-two*Y/(w*t*t*t) - X/(w*w*t*t));
102 }
103 }
104 else if (deriv == 2) {
105 if (comp1 == 0 && comp2 == 0) {
106 const Real two(2), six(6);
107 val = scale*(two*Y/(w*w*w*t*t) + six*X/(w*w*w*w*t));
108 }
109 else if (comp1 == 1 && comp2 == 1) {
110 const Real two(2), six(6);
111 val = scale*(six*Y/(w*t*t*t*t) + two*X/(w*w*t*t*t));
112 }
113 else if (comp1 == 0 && comp2 == 1) {
114 const Real two(2);
115 val = scale*two*(Y/(w*w*t*t*t) + X/(w*w*w*t*t));
116 }
117 else if (comp1 == 1 && comp2 == 0) {
118 const Real two(2);
119 val = scale*two*(Y/(w*w*t*t*t) + X/(w*w*w*t*t));
120 }
121 }
122 return val;
123 }
124
125 Real displacement(const Real w, const Real t, const int deriv = 0, const int comp1 = 0, const int comp2 = 0) const {
126 const Real four(4), L(100), E(2.9e7), X(500), Y(1000);
127 const Real C = four*std::pow(L,3)/E;
128 Real arg1 = std::pow(Y/(t*t),2), arg2 = std::pow(X/(w*w),2);
129 Real mag = std::sqrt(arg1 + arg2);
130 Real val(0);
131 if (deriv == 0) {
132 val = C/(w*t)*mag;
133 }
134 else if (deriv == 1) {
135 if (comp1 == 0) {
136 const Real three(3);
137 val = -C * (three * std::pow(X*t*t,2) + std::pow(Y*w*w,2))
138 / (std::pow(w,6)*std::pow(t,5)*mag);
139 }
140 else if (comp1 == 1) {
141 const Real three(3);
142 val = -C * (std::pow(X*t*t,2) + three*std::pow(Y*w*w,2))
143 / (std::pow(w,5)*std::pow(t,6)*mag);
144 }
145 }
146 else if (deriv == 2) {
147 if (comp1 == 0 && comp2 == 0) {
148 const Real two(2), six(6), nine(9);
149 val = C * two * mag * (std::pow(Y*w*w,4) + nine*std::pow(Y*X*w*w*t*t,2) + six*std::pow(X*t*t,4))
150 / (std::pow(w,3)*t*std::pow(std::pow(Y*w*w,2)+std::pow(X*t*t,2),2));
151 }
152 else if (comp1 == 1 && comp2 == 1) {
153 const Real two(2), six(6), nine(9);
154 val = C * two * mag * (six*std::pow(Y*w*w,4) + nine*std::pow(Y*X*w*w*t*t,2) + std::pow(X*t*t,4))
155 / (std::pow(t,3)*w*std::pow(std::pow(Y*w*w,2)+std::pow(X*t*t,2),2));
156 }
157 else if (comp1 == 0 && comp2 == 1) {
158 const Real two(2), three(3);
159 val = C * (three*std::pow(X*t*t,4) + two*std::pow(X*Y*t*t*w*w,2) + three*std::pow(Y*w*w,4))
160 / (std::pow(t*w,6)*mag*(std::pow(X*t*t,2) + std::pow(Y*w*w,2)));
161 }
162 else if (comp1 == 1 && comp2 == 0) {
163 const Real two(2), three(3);
164 val = C * (three*std::pow(X*t*t,4) + two*std::pow(X*Y*t*t*w*w,2) + three*std::pow(Y*w*w,4))
165 / (std::pow(t*w,6)*mag*(std::pow(X*t*t,2) + std::pow(Y*w*w,2)));
166 }
167 }
168 return val;
169 }
170 public:
172
173 void value( std::vector<Real> &c, const std::vector<Real> &x, Real &tol ) {
174 const Real R(40000), D(2.2535), one(1);
175 Real s = stress(x[0],x[1],0)/R;
176 Real d = displacement(x[0],x[1],0)/D;
177 c[0] = s - one;
178 c[1] = d - one;
179 }
180
181 void applyJacobian( std::vector<Real> &jv, const std::vector<Real> &v, const std::vector<Real> &x, Real &tol ) {
182 const Real R(40000), D(2.2535);
183 Real s0 = stress(x[0],x[1],1,0)/R, s1 = stress(x[0],x[1],1,1)/R;
184 Real d0 = displacement(x[0],x[1],1,0)/D, d1 = displacement(x[0],x[1],1,1)/D;
185 jv[0] = s0*v[0] + s1*v[1];
186 jv[1] = d0*v[0] + d1*v[1];
187 }
188
189 void applyAdjointJacobian( std::vector<Real> &ajv, const std::vector<Real> &v, const std::vector<Real> &x, Real &tol ) {
190 const Real R(40000), D(2.2535);
191 Real s0 = stress(x[0],x[1],1,0)/R, s1 = stress(x[0],x[1],1,1)/R;
192 Real d0 = displacement(x[0],x[1],1,0)/D, d1 = displacement(x[0],x[1],1,1)/D;
193 ajv[0] = s0*v[0] + d0*v[1];
194 ajv[1] = s1*v[0] + d1*v[1];
195 }
196#if USE_HESSVEC
197 void applyAdjointHessian( std::vector<Real> &ahuv, const std::vector<Real> &u, const std::vector<Real> &v, const std::vector<Real> &x, Real &tol ) {
198 const Real R(40000), D(2.2535);
199 Real s00 = stress(x[0],x[1],2,0,0)/R, s01 = stress(x[0],x[1],2,0,1)/R;
200 Real s10 = stress(x[0],x[1],2,1,0)/R, s11 = stress(x[0],x[1],2,1,1)/R;
201 Real d00 = displacement(x[0],x[1],2,0,0)/D, d01 = displacement(x[0],x[1],2,0,1)/D;
202 Real d10 = displacement(x[0],x[1],2,1,0)/D, d11 = displacement(x[0],x[1],2,1,1)/D;
203 ahuv[0] = (s00*u[0] + d00*u[1])*v[0] + (s01*u[0] + d01*u[1])*v[1];
204 ahuv[1] = (s10*u[0] + d10*u[1])*v[0] + (s11*u[0] + d11*u[1])*v[1];
205 }
206#endif
207 };
208
209 template<class Real>
210 class getCantilever : public TestProblem<Real> {
211 public:
213
214 Ptr<Objective<Real>> getObjective(void) const {
215 return makePtr<Objective_Cantilever<Real>>();
216 }
217
218 Ptr<Vector<Real>> getInitialGuess(void) const {
219 int n = 2;
220 Ptr<std::vector<Real>> scale = makePtr<std::vector<Real>>(n,static_cast<Real>(1.0));
221 Ptr<std::vector<Real>> xp = makePtr<std::vector<Real>>(n,static_cast<Real>(0.0));
222 (*xp)[0] = static_cast<Real>(2.0);
223 (*xp)[1] = static_cast<Real>(2.0);
224 return makePtr<PrimalScaledStdVector<Real>>(xp,scale);
225 }
226
227 Ptr<Vector<Real>> getSolution(const int i = 0) const {
228 int n = 2;
229 Ptr<std::vector<Real>> scale = makePtr<std::vector<Real>>(n,static_cast<Real>(1.0));
230 Ptr<std::vector<Real>> xp = makePtr<std::vector<Real>>(n,static_cast<Real>(0.0));
231 (*xp)[0] = static_cast<Real>(2.3520341271);
232 (*xp)[1] = static_cast<Real>(3.3262784077);
233 return makePtr<PrimalScaledStdVector<Real>>(xp,scale);
234 }
235
236 Ptr<BoundConstraint<Real>> getBoundConstraint(void) const {
237 int n = 2;
238 Ptr<std::vector<Real>> scale = makePtr<std::vector<Real>>(n,static_cast<Real>(1.0));
239 Ptr<std::vector<Real>> lp = makePtr<std::vector<Real>>(n,static_cast<Real>(1.0));
240 Ptr<std::vector<Real>> up = makePtr<std::vector<Real>>(n,static_cast<Real>(4.0));
241 Ptr<Vector<Real>> l = makePtr<PrimalScaledStdVector<Real>>(lp,scale);
242 Ptr<Vector<Real>> u = makePtr<PrimalScaledStdVector<Real>>(up,scale);
243 return makePtr<Bounds<Real>>(l,u);
244 }
245
246 Ptr<Constraint<Real>> getInequalityConstraint(void) const {
247 return makePtr<Constraint_Cantilever<Real>>();
248 }
249
250 Ptr<Vector<Real>> getInequalityMultiplier(void) const {
251 Ptr<std::vector<Real>> scale = makePtr<std::vector<Real>>(2,static_cast<Real>(1.0));
252 Ptr<std::vector<Real>> lp = makePtr<std::vector<Real>>(2,static_cast<Real>(0.0));
253 return makePtr<DualScaledStdVector<Real>>(lp,scale);
254 }
255
256 Ptr<BoundConstraint<Real>> getSlackBoundConstraint(void) const {
257 Ptr<std::vector<Real>> scale = makePtr<std::vector<Real>>(2,static_cast<Real>(1.0));
258 Ptr<std::vector<Real>> up = makePtr<std::vector<Real>>(2,static_cast<Real>(0.0));
259 Ptr<Vector<Real>> u = makePtr<DualScaledStdVector<Real>>(up,scale);
260 return makePtr<Bounds<Real>>(*u,false);
261 }
262 };
263
264}// End ZOO Namespace
265}// End ROL Namespace
266
267#endif
Contains definitions of test objective functions.
Defines the equality constraint operator interface for StdVectors.
void applyAdjointHessian(Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
Apply the derivative of the adjoint of the constraint Jacobian at to vector in direction ,...
Specializes the ROL::Objective interface for objective functions that operate on ROL::StdVector's.
virtual void hessVec(std::vector< Real > &hv, const std::vector< Real > &v, const std::vector< Real > &x, Real &tol)
void value(std::vector< Real > &c, const std::vector< Real > &x, Real &tol)
void applyAdjointJacobian(std::vector< Real > &ajv, const std::vector< Real > &v, const std::vector< Real > &x, Real &tol)
void applyJacobian(std::vector< Real > &jv, const std::vector< Real > &v, const std::vector< Real > &x, Real &tol)
Real displacement(const Real w, const Real t, const int deriv=0, const int comp1=0, const int comp2=0) const
Real stress(const Real w, const Real t, const int deriv=0, const int comp1=0, const int comp2=0) const
void gradient(std::vector< Real > &g, const std::vector< Real > &x, Real &tol)
Real value(const std::vector< Real > &x, Real &tol)
Ptr< Objective< Real > > getObjective(void) const
Ptr< Vector< Real > > getSolution(const int i=0) const
Ptr< BoundConstraint< Real > > getBoundConstraint(void) const
Ptr< Constraint< Real > > getInequalityConstraint(void) const
Ptr< Vector< Real > > getInitialGuess(void) const
Ptr< Vector< Real > > getInequalityMultiplier(void) const
Ptr< BoundConstraint< Real > > getSlackBoundConstraint(void) const