ROL
ROL_DynamicObjective_CheckInterface.hpp
Go to the documentation of this file.
1// @HEADER
2// ************************************************************************
3//
4// Rapid Optimization Library (ROL) Package
5// Copyright (2014) Sandia Corporation
6//
7// Under terms of Objtract DE-AC04-94AL85000, there is a non-exclusive
8// license for use of this work by or on behalf of the U.S. Government.
9//
10// Redistribution and use in source and binary forms, with or without
11// modification, are permitted provided that the following Objditions are
12// met:
13//
14// 1. Redistributions of source code must retain the above copyright
15// notice, this list of Objditions and the following disclaimer.
16//
17// 2. Redistributions in binary form must reproduce the above copyright
18// notice, this list of Objditions and the following disclaimer in the
19// documentation and/or other materials provided with the distribution.
20//
21// 3. Neither the name of the Corporation nor the names of the
22// Objtributors may be used to endorse or promote products derived from
23// this software without specific prior written permission.
24//
25// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29// ObjTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30// EXEMPLARY, OR ObjSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33// LIABILITY, WHETHER IN ObjTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36//
37// Questions? Objtact lead developers:
38// Drew Kouri (dpkouri@sandia.gov) and
39// Denis Ridzal (dridzal@sandia.gov)
40//
41// ************************************************************************
42// @HEADER
43
44
45#pragma once
46#ifndef ROL_DYNAMICOBJECTIVE_CHECKINTERFACE_HPP
47#define ROL_DYNAMICOBJECTIVE_CHECKINTERFACE_HPP
48
49#include <functional>
50
52#include "ROL_FunctionBindings.hpp"
53
54
55namespace ROL {
56namespace details {
57
58using namespace std;
59namespace ph = std::placeholders;
60
61template<typename Real>
63private:
64
65 using V = Vector<Real>;
67
69 Real tol_;
71
72public:
73
75 ts_.t.resize(2);
76 ts_.t.at(0) = 0.0;
77 ts_.t.at(1) = 1.0;
78 ts_.k = 0;
79 }
80
82 obj_(obj), ts_(ts) { }
83
84
85 f_update_t<Real> update_uo( const V& un, const V& z ) {
86 return bind( &Obj::update, &obj_, ph::_1, cref(un), cref(z), ts_ );
87 }
88
89 f_update_t<Real> update_un( const V& uo, const V& z ) {
90 return bind( &Obj::update, &obj_, cref(uo), ph::_1, cref(z), ts_ );
91 }
92
93 f_update_t<Real> update_z( const V& uo, const V& un ) {
94 return bind( &Obj::update, &obj_, cref(uo), cref(un), ph::_1, ts_ );
95 }
96
97 //----------------------------------------------------------------------------
98
99 f_scalar_t<Real> value_uo( const V& un, const V& z ) {
100 return bind( &Obj::value, &obj_, ph::_1, cref(un), cref(z), ts_ );
101 }
102
103 f_scalar_t<Real> value_un( const V& uo, const V& z ) {
104 return bind( &Obj::value, &obj_, cref(uo), ph::_1, cref(z), ts_ );
105 }
106
107 f_scalar_t<Real> value_z( const V& uo, const V& un ) {
108 return bind( &Obj::value, &obj_, cref(uo), cref(un), ph::_1, ts_ );
109 }
110
111 //----------------------------------------------------------------------------
112
113 f_vector_t<Real> gradient_uo( const V& un, const V& z ) {
114 return bind( &Obj::gradient_uo, &obj_, ph::_1, ph::_2, cref(un), cref(z), ts_ );
115 }
116
117 f_vector_t<Real> gradient_un( const V& uo, const V& z ) {
118 return bind( &Obj::gradient_un, &obj_, ph::_1, cref(uo), ph::_2, cref(z), ts_ );
119 }
120
121 f_vector_t<Real> gradient_z( const V& uo, const V& un ) {
122 return bind( &Obj::gradient_z, &obj_, ph::_1, cref(uo), cref(un), ph::_2, ts_ );
123 }
124
125 // For hessian checks
126 f_vector_t<Real> gradient_uo_uo( const V& un, const V& z ) {
127 return bind( &Obj::gradient_uo, &obj_, ph::_1, ph::_2, cref(un), cref(z), ts_ );
128 }
129
130 f_vector_t<Real> gradient_uo_un( const V& uo, const V& z ) {
131 return bind( &Obj::gradient_uo, &obj_, ph::_1, cref(uo), ph::_2, cref(z), ts_ );
132 }
133
134 f_vector_t<Real> gradient_uo_z( const V& uo, const V& un ) {
135 return bind( &Obj::gradient_uo, &obj_, ph::_1, cref(uo), cref(un), ph::_2, ts_ );
136 }
137
138 f_vector_t<Real> gradient_un_uo( const V& un, const V& z ) {
139 return bind( &Obj::gradient_un, &obj_, ph::_1, ph::_2, cref(un), cref(z), ts_ );
140 }
141
142 f_vector_t<Real> gradient_un_un( const V& uo, const V& z ) {
143 return bind( &Obj::gradient_un, &obj_, ph::_1, cref(uo), ph::_2, cref(z), ts_ );
144 }
145
146 f_vector_t<Real> gradient_un_z( const V& uo, const V& un ) {
147 return bind( &Obj::gradient_un, &obj_, ph::_1, cref(uo), cref(un), ph::_2, ts_ );
148 }
149
150 f_vector_t<Real> gradient_z_uo( const V& un, const V& z ) {
151 return bind( &Obj::gradient_z, &obj_, ph::_1, ph::_2, cref(un), cref(z), ts_ );
152 }
153
154 f_vector_t<Real> gradient_z_un( const V& uo, const V& z ) {
155 return bind( &Obj::gradient_z, &obj_, ph::_1, cref(uo), ph::_2, cref(z), ts_ );
156 }
157
158 f_vector_t<Real> gradient_z_z( const V& uo, const V& un ) {
159 return bind( &Obj::gradient_z, &obj_, ph::_1, cref(uo), cref(un), ph::_2, ts_ );
160 }
161
162 //----------------------------------------------------------------------------
163
164 f_dderiv_t<Real> hessVec_uo_uo( const V& un, const V& z ) {
165 return bind( &Obj::hessVec_uo_uo, &obj_, ph::_1, ph::_2, ph::_3, cref(un), cref(z), ts_ );
166 }
167
168 f_dderiv_t<Real> hessVec_uo_un( const V& uo, const V& z ) {
169 return bind( &Obj::hessVec_uo_un, &obj_, ph::_1, ph::_2, cref(uo), ph::_3, cref(z), ts_ );
170 }
171
172 f_dderiv_t<Real> hessVec_uo_z( const V& uo, const V& un ) {
173 return bind( &Obj::hessVec_uo_z, &obj_, ph::_1, ph::_2, cref(uo), cref(un), ph::_3, ts_ );
174 }
175
176 //----------------------------------------------------------------------------
177
178 f_dderiv_t<Real> hessVec_un_uo( const V& un, const V& z ) {
179 return bind( &Obj::hessVec_un_uo, &obj_, ph::_1, ph::_2, ph::_3, cref(un), cref(z), ts_ );
180 }
181
182 f_dderiv_t<Real> hessVec_un_un( const V& uo, const V& z ) {
183 return bind( &Obj::hessVec_un_un, &obj_, ph::_1, ph::_2, cref(uo), ph::_3, cref(z), ts_ );
184 }
185
186 f_dderiv_t<Real> hessVec_un_z( const V& uo, const V& un ) {
187 return bind( &Obj::hessVec_un_z, &obj_, ph::_1, ph::_2, cref(uo), cref(un), ph::_3, ts_ );
188 }
189
190 //----------------------------------------------------------------------------
191
192 f_dderiv_t<Real> hessVec_z_uo( const V& un, const V& z ) {
193 return bind( &Obj::hessVec_z_uo, &obj_, ph::_1, ph::_2, ph::_3, cref(un), cref(z), ts_ );
194 }
195
196 f_dderiv_t<Real> hessVec_z_un( const V& uo, const V& z ) {
197 return bind( &Obj::hessVec_z_un, &obj_, ph::_1, ph::_2, cref(uo), ph::_3, cref(z), ts_ );
198 }
199
200 f_dderiv_t<Real> hessVec_z_z( const V& uo, const V& un ) {
201 return bind( &Obj::hessVec_z_z, &obj_, ph::_1, ph::_2, cref(uo), cref(un), ph::_3, ts_ );
202 }
203
204
205}; // DynamicObjective_CheckInterface
206
207
208} // namespace details
209
211
212template<typename Real>
215}
216
217template<typename Real>
219 TimeStamp<Real>& ts ) {
221}
222
223
224} // namespace ROL
225
226
227#endif // ROL_DYNAMICOBJECTIVE_CHECKINTERFACE_HPP
228
Defines the time-dependent objective function interface for simulation-based optimization....
virtual void hessVec_un_z(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_z_uo(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_un_uo(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void gradient_un(V &g, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_z_z(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_uo_uo(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual Real value(const V &uo, const V &un, const V &z, const TS &timeStamp) const =0
virtual void gradient_z(V &g, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_uo_un(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_un_un(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void update(const V &uo, const V &un, const V &z, const TS &timeStamp)
virtual void gradient_uo(V &g, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_z_un(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
virtual void hessVec_uo_z(V &hv, const V &v, const V &uo, const V &un, const V &z, const TS &timeStamp) const
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:84
f_vector_t< Real > gradient_uo_uo(const V &un, const V &z)
f_vector_t< Real > gradient_z_un(const V &uo, const V &z)
f_dderiv_t< Real > hessVec_un_z(const V &uo, const V &un)
f_dderiv_t< Real > hessVec_un_uo(const V &un, const V &z)
f_update_t< Real > update_z(const V &uo, const V &un)
f_vector_t< Real > gradient_un_un(const V &uo, const V &z)
f_vector_t< Real > gradient_un_uo(const V &un, const V &z)
f_dderiv_t< Real > hessVec_z_uo(const V &un, const V &z)
f_vector_t< Real > gradient_un_z(const V &uo, const V &un)
f_vector_t< Real > gradient_uo_z(const V &uo, const V &un)
f_vector_t< Real > gradient_z_uo(const V &un, const V &z)
f_vector_t< Real > gradient_uo_un(const V &uo, const V &z)
f_dderiv_t< Real > hessVec_z_un(const V &uo, const V &z)
f_dderiv_t< Real > hessVec_z_z(const V &uo, const V &un)
f_vector_t< Real > gradient_z_z(const V &uo, const V &un)
f_dderiv_t< Real > hessVec_uo_uo(const V &un, const V &z)
f_vector_t< Real > gradient_z(const V &uo, const V &un)
f_dderiv_t< Real > hessVec_un_un(const V &uo, const V &z)
f_dderiv_t< Real > hessVec_uo_un(const V &uo, const V &z)
f_dderiv_t< Real > hessVec_uo_z(const V &uo, const V &un)
DynamicConstraint_CheckInterface< Real > make_check(DynamicConstraint< Real > &con)
Contains local time step information.