ROL
Public Types | Public Member Functions | Static Public Member Functions | Private Types | Private Attributes | List of all members
ROL::PartitionedVector< Real > Class Template Reference

Defines the linear algebra of vector space on a generic partitioned vector. More...

#include <ROL_PartitionedVector.hpp>

+ Inheritance diagram for ROL::PartitionedVector< Real >:

Public Types

typedef std::vector< PV >::size_type size_type
 

Public Member Functions

 PartitionedVector (const std::vector< Vp > &vecs)
 
void set (const V &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
void plus (const V &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
void axpy (const Real alpha, const V &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).
 
Real dot (const V &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
Vp clone () const
 Clone to make a new (uninitialized) vector.
 
const Vdual (void) const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
Vp basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
void zero ()
 Set to zero vector.
 
void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const Elementwise::BinaryFunction< Real > &f, const V &x)
 
Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).
 
void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u].
 
void print (std::ostream &outStream) const
 
const Vector< Real > & operator[] (size_type i) const
 
Vector< Real > & operator[] (size_type i)
 
ROL::Ptr< const Vector< Real > > get (size_type i) const
 
ROL::Ptr< Vector< Real > > get (size_type i)
 
void set (size_type i, const V &x)
 
void zero (size_type i)
 
size_type numVectors () const
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void plus (const Vector &x)=0
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
virtual void scale (const Real alpha)=0
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
virtual Real dot (const Vector &x) const =0
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
virtual Real norm () const =0
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
virtual ROL::Ptr< Vectorclone () const =0
 Clone to make a new (uninitialized) vector.
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).
 
virtual void zero ()
 Set to zero vector.
 
virtual ROL::Ptr< Vectorbasis (const int i) const
 Return i-th basis vector.
 
virtual int dimension () const
 Return dimension of the vector space.
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
virtual const Vectordual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
virtual Real apply (const Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual void print (std::ostream &outStream) const
 
virtual void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).
 
virtual void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u].
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods.
 

Static Public Member Functions

static Ptr< PartitionedVectorcreate (std::initializer_list< Vp > vs)
 
static Ptr< PartitionedVectorcreate (const V &x, size_type N)
 

Private Types

typedef Vector< Real > V
 
typedef ROL::Ptr< VVp
 
typedef PartitionedVector< Real > PV
 

Private Attributes

const std::vector< Vpvecs_
 
std::vector< Vpdual_vecs_
 
ROL::Ptr< PVdual_pvec_
 

Detailed Description

template<class Real>
class ROL::PartitionedVector< Real >

Defines the linear algebra of vector space on a generic partitioned vector.

Definition at line 60 of file ROL_PartitionedVector.hpp.

Member Typedef Documentation

◆ V

template<class Real >
typedef Vector<Real> ROL::PartitionedVector< Real >::V
private

Definition at line 62 of file ROL_PartitionedVector.hpp.

◆ Vp

template<class Real >
typedef ROL::Ptr<V> ROL::PartitionedVector< Real >::Vp
private

Definition at line 63 of file ROL_PartitionedVector.hpp.

◆ PV

template<class Real >
typedef PartitionedVector<Real> ROL::PartitionedVector< Real >::PV
private

Definition at line 64 of file ROL_PartitionedVector.hpp.

◆ size_type

template<class Real >
typedef std::vector<PV>::size_type ROL::PartitionedVector< Real >::size_type

Definition at line 72 of file ROL_PartitionedVector.hpp.

Constructor & Destructor Documentation

◆ PartitionedVector()

template<class Real >
ROL::PartitionedVector< Real >::PartitionedVector ( const std::vector< Vp > &  vecs)
inline

Member Function Documentation

◆ set() [1/2]

template<class Real >
void ROL::PartitionedVector< Real >::set ( const V x)
inlinevirtual

Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).

   @param[in]      x     is a vector.

   On return \f$\mathtt{*this} = x\f$.
   Uses #zero and #plus methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 80 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::FletcherObjectiveE< Real >::AugSystemPrecond::applyInverse(), ROL::AugmentedSystemPrecOperator< Real >::applyInverse(), ROL::BoundFletcher< Real >::AugSystemPrecond::applyInverse(), ROL::Fletcher< Real >::AugSystemPrecond::applyInverse(), and ROL::PartitionedVector< Real >::basis().

◆ plus()

template<class Real >
void ROL::PartitionedVector< Real >::plus ( const V x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 90 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

◆ scale()

template<class Real >
void ROL::PartitionedVector< Real >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 100 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ axpy()

template<class Real >
void ROL::PartitionedVector< Real >::axpy ( const Real  alpha,
const V x 
)
inlinevirtual

Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of @b x.
   @param[in]      x     is a vector.

   On return \f$\mathtt{*this} = \mathtt{*this} + \alpha x \f$.
   Uses #clone, #set, #scale and #plus for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 106 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

◆ dot()

template<class Real >
Real ROL::PartitionedVector< Real >::dot ( const V x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 117 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

◆ norm()

template<class Real >
Real ROL::PartitionedVector< Real >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 129 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::norm(), and ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::PartitionedVector< Real >::norm().

◆ clone()

template<class Real >
Vp ROL::PartitionedVector< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Implements ROL::Vector< Real >.

Definition at line 137 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::clone(), and ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::PartitionedVector< Real >::basis(), ROL::PartitionedVector< Real >::clone(), and ROL::PartitionedVector< Real >::PartitionedVector().

◆ dual()

template<class Real >
const V & ROL::PartitionedVector< Real >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 145 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::dual(), ROL::PartitionedVector< Real >::dual_pvec_, ROL::PartitionedVector< Real >::dual_vecs_, and ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::AugmentedSystemOperator< Real >::apply(), ROL::PartitionedVector< Real >::dual(), and ROL::PartitionedVector< Real >::PartitionedVector().

◆ apply()

template<class Real >
Real ROL::PartitionedVector< Real >::apply ( const Vector< Real > &  x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 153 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::get(), ROL::PartitionedVector< Real >::numVectors(), and ROL::PartitionedVector< Real >::vecs_.

◆ basis()

template<class Real >
Vp ROL::PartitionedVector< Real >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 165 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::basis(), ROL::PartitionedVector< Real >::clone(), ROL::PartitionedVector< Real >::dimension(), ROL::PartitionedVector< Real >::set(), ROL::PartitionedVector< Real >::vecs_, and ROL::PartitionedVector< Real >::zero().

Referenced by ROL::PartitionedVector< Real >::basis().

◆ dimension()

template<class Real >
int ROL::PartitionedVector< Real >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 188 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::PartitionedVector< Real >::basis().

◆ zero() [1/2]

template<class Real >
void ROL::PartitionedVector< Real >::zero ( )
inlinevirtual

Set to zero vector.

   Uses #scale by zero for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 196 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::Constraint_Partitioned< Real >::applyAdjointHessian(), ROL::Constraint_Partitioned< Real >::applyAdjointJacobian(), and ROL::PartitionedVector< Real >::basis().

◆ applyUnary()

template<class Real >
void ROL::PartitionedVector< Real >::applyUnary ( const Elementwise::UnaryFunction< Real > &  f)
inlinevirtual

Reimplemented from ROL::Vector< Real >.

Definition at line 203 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ applyBinary()

template<class Real >
void ROL::PartitionedVector< Real >::applyBinary ( const Elementwise::BinaryFunction< Real > &  f,
const V x 
)
inlinevirtual

◆ reduce()

template<class Real >
Real ROL::PartitionedVector< Real >::reduce ( const Elementwise::ReductionOp< Real > &  r) const
inlinevirtual

◆ setScalar()

template<class Real >
void ROL::PartitionedVector< Real >::setScalar ( const Real  C)
inlinevirtual

Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).

   @param[in]      C     is a scalar.

   On return \f$\mathtt{*this} = C\f$.
   Uses #applyUnary methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 227 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ randomize()

template<class Real >
void ROL::PartitionedVector< Real >::randomize ( const Real  l = 0.0,
const Real  u = 1.0 
)
inlinevirtual

Set vector to be uniform random between [l,u].

   @param[in]      l     is a the lower bound.
   @param[in]      u     is a the upper bound.

   On return the components of \f$\mathtt{*this}\f$ are uniform
   random numbers on the interval \f$[l,u]\f$.
         The default implementation uses #applyUnary methods for the
         computation. Please overload if a more efficient implementation is
   needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 233 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ print()

template<class Real >
void ROL::PartitionedVector< Real >::print ( std::ostream &  outStream) const
inlinevirtual

Reimplemented from ROL::Vector< Real >.

Definition at line 239 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ operator[]() [1/2]

template<class Real >
const Vector< Real > & ROL::PartitionedVector< Real >::operator[] ( size_type  i) const
inline

Definition at line 247 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ operator[]() [2/2]

template<class Real >
Vector< Real > & ROL::PartitionedVector< Real >::operator[] ( size_type  i)
inline

Definition at line 251 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ get() [1/2]

template<class Real >
ROL::Ptr< const Vector< Real > > ROL::PartitionedVector< Real >::get ( size_type  i) const
inline

Definition at line 255 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

Referenced by ROL::PartitionedVector< Real >::apply(), ROL::BlockOperator< Real >::apply(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::apply(), ROL::TypeB::PrimalDualActiveSetAlgorithm< Real >::HessianPDAS_Poly::apply(), ROL::FletcherObjectiveE< Real >::AugSystem::apply(), ROL::AugmentedSystemOperator< Real >::apply(), ROL::BoundFletcher< Real >::AugSystemSym::apply(), ROL::BoundFletcher< Real >::AugSystemNonSym::apply(), ROL::Fletcher< Real >::AugSystem::apply(), ROL::PrimalDualInteriorPointBlock11< Real >::apply(), ROL::PrimalDualInteriorPointBlock12< Real >::apply(), ROL::PrimalDualInteriorPointBlock21< Real >::apply(), ROL::PrimalDualInteriorPointBlock22< Real >::apply(), ROL::Constraint_Partitioned< Real >::applyAdjointHessian(), ROL::Constraint_Partitioned< Real >::applyAdjointJacobian(), ROL::PartitionedVector< Real >::applyBinary(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::applyInverse(), ROL::TypeB::PrimalDualActiveSetAlgorithm< Real >::PrecondPDAS_Poly::applyInverse(), ROL::FletcherObjectiveE< Real >::AugSystemPrecond::applyInverse(), ROL::AugmentedSystemPrecOperator< Real >::applyInverse(), ROL::BoundFletcher< Real >::AugSystemPrecond::applyInverse(), ROL::Fletcher< Real >::AugSystemPrecond::applyInverse(), ROL::PrimalDualInteriorPointBlock22< Real >::applyInverse(), ROL::BoundConstraint_Partitioned< Real >::applyInverseScalingFunction(), ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian(), ROL::Constraint_Partitioned< Real >::applyJacobian(), ROL::Constraint_Partitioned< Real >::applyPreconditioner(), ROL::BoundConstraint_Partitioned< Real >::applyScalingFunctionJacobian(), ROL::PartitionedVector< Real >::axpy(), ROL::InteriorPoint::MeritFunction< Real >::dirDeriv(), ROL::PartitionedVector< Real >::dot(), ROL::Problem< Real >::finalizeIteration(), ROL::Constraint_TimeSimOpt< Real >::getNewVector(), ROL::Constraint_TimeSimOpt< Real >::getOldVector(), ROL::PrimalDualInteriorPointResidual< Real >::getOptMult(), ROL::ReducedDynamicObjective< Real >::gradient(), ROL::ReducedDynamicObjective< Real >::hessVec(), ROL::SlacklessObjective< Real >::invHessVec(), ROL::BoundConstraint_Partitioned< Real >::isFeasible(), ROL::InteriorPoint::MeritFunction< Real >::MeritFunction(), ROL::PartitionedVector< Real >::plus(), ROL::SlacklessObjective< Real >::precond(), ROL::PrimalDualInteriorPointBlock11< Real >::PrimalDualInteriorPointBlock11(), ROL::PrimalDualInteriorPointBlock21< Real >::PrimalDualInteriorPointBlock21(), ROL::PrimalDualInteriorPointBlock22< Real >::PrimalDualInteriorPointBlock22(), ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual(), ROL::InteriorPoint::PrimalDualResidual< Real >::PrimalDualResidual(), ROL::BoundConstraint_Partitioned< Real >::project(), ROL::BoundConstraint_Partitioned< Real >::projectInterior(), ROL::BoundConstraint_Partitioned< Real >::pruneLowerActive(), ROL::BoundConstraint_Partitioned< Real >::pruneUpperActive(), ROL::PrimalDualSystemStep< Real >::repartition(), ROL::PartitionedVector< Real >::set(), ROL::ReducedDynamicObjective< Real >::solveAdjoint(), ROL::ReducedDynamicObjective< Real >::solveState(), ROL::BoundConstraint_Partitioned< Real >::update(), ROL::PrimalDualInteriorPointBlock11< Real >::update(), ROL::PrimalDualInteriorPointBlock22< Real >::update(), ROL::PrimalDualInteriorPointResidual< Real >::update(), ROL::PrimalDualInteriorPointBlock21< Real >::update(), ROL::ReducedDynamicObjective< Real >::updateSketch(), ROL::InteriorPoint::MeritFunction< Real >::value(), ROL::ReducedDynamicObjective< Real >::value(), ROL::InteriorPoint::PrimalDualResidual< Real >::value(), ROL::PrimalDualInteriorPointResidual< Real >::value(), ROL::Constraint_Partitioned< Real >::value(), ROL::SlacklessConstraint< Real >::zeroSlack(), and ROL::SlacklessObjective< Real >::zeroSlack().

◆ get() [2/2]

template<class Real >
ROL::Ptr< Vector< Real > > ROL::PartitionedVector< Real >::get ( size_type  i)
inline

Definition at line 259 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ set() [2/2]

template<class Real >
void ROL::PartitionedVector< Real >::set ( size_type  i,
const V x 
)
inline

Definition at line 263 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ zero() [2/2]

template<class Real >
void ROL::PartitionedVector< Real >::zero ( size_type  i)
inline

Definition at line 267 of file ROL_PartitionedVector.hpp.

References ROL::PartitionedVector< Real >::vecs_.

◆ numVectors()

template<class Real >
size_type ROL::PartitionedVector< Real >::numVectors ( ) const
inline

◆ create() [1/2]

template<class Real >
static Ptr< PartitionedVector > ROL::PartitionedVector< Real >::create ( std::initializer_list< Vp vs)
inlinestatic

◆ create() [2/2]

template<class Real >
static Ptr< PartitionedVector > ROL::PartitionedVector< Real >::create ( const V x,
size_type  N 
)
inlinestatic

Definition at line 284 of file ROL_PartitionedVector.hpp.

References ROL::Vector< Real >::clone().

Member Data Documentation

◆ vecs_

template<class Real >
const std::vector<Vp> ROL::PartitionedVector< Real >::vecs_
private

◆ dual_vecs_

template<class Real >
std::vector<Vp> ROL::PartitionedVector< Real >::dual_vecs_
mutableprivate

◆ dual_pvec_

template<class Real >
ROL::Ptr<PV> ROL::PartitionedVector< Real >::dual_pvec_
mutableprivate

Definition at line 69 of file ROL_PartitionedVector.hpp.

Referenced by ROL::PartitionedVector< Real >::dual().


The documentation for this class was generated from the following file: