ROL
Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
Objective_GrossPitaevskii< Real > Class Template Reference

#include <example_01.hpp>

+ Inheritance diagram for Objective_GrossPitaevskii< Real >:

Public Member Functions

 Objective_GrossPitaevskii (const Real &g, const Vector< Real > &V)
 
Real value (const Vector< Real > &psi, Real &tol)
 Evaluate \(J[\psi]\).
 
void gradient (Vector< Real > &g, const Vector< Real > &psi, Real &tol)
 Evaluate \(\nabla J[\psi]\).
 
void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \(\nabla^2 J[\psi] v\).
 
 Objective_GrossPitaevskii (const Real &g, const Vector< Real > &V, ROL::Ptr< FiniteDifference< Real > > fd)
 
Real value (const Vector< Real > &psi, Real &tol)
 Evaluate \(J[\psi]\).
 
void gradient (Vector< Real > &g, const Vector< Real > &psi, Real &tol)
 Evaluate \(\nabla J[\psi]\).
 
void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \(\nabla^2 J[\psi] v\).
 
- Public Member Functions inherited from ROL::Objective< Real >
virtual ~Objective ()
 
 Objective ()
 
virtual void update (const Vector< Real > &x, UpdateType type, int iter=-1)
 Update objective function.
 
virtual void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update objective function.
 
virtual Real value (const Vector< Real > &x, Real &tol)=0
 Compute value.
 
virtual void gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol)
 Compute gradient.
 
virtual Real dirDeriv (const Vector< Real > &x, const Vector< Real > &d, Real &tol)
 Compute directional derivative.
 
virtual void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply Hessian approximation to vector.
 
virtual void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply inverse Hessian approximation to vector.
 
virtual void precond (Vector< Real > &Pv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply preconditioner to vector.
 
virtual std::vector< std::vector< Real > > checkGradient (const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference gradient check.
 
virtual std::vector< std::vector< Real > > checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference gradient check.
 
virtual std::vector< std::vector< Real > > checkGradient (const Vector< Real > &x, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference gradient check with specified step sizes.
 
virtual std::vector< std::vector< Real > > checkGradient (const Vector< Real > &x, const Vector< Real > &g, const Vector< Real > &d, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference gradient check with specified step sizes.
 
virtual std::vector< std::vector< Real > > checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference Hessian-applied-to-vector check.
 
virtual std::vector< std::vector< Real > > checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference Hessian-applied-to-vector check.
 
virtual std::vector< std::vector< Real > > checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference Hessian-applied-to-vector check with specified step sizes.
 
virtual std::vector< std::vector< Real > > checkHessVec (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference Hessian-applied-to-vector check with specified step sizes.
 
virtual std::vector< Real > checkHessSym (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
 Hessian symmetry check.
 
virtual std::vector< Real > checkHessSym (const Vector< Real > &x, const Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &w, const bool printToStream=true, std::ostream &outStream=std::cout)
 Hessian symmetry check.
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Types

typedef std::vector< Real > vector
 
typedef Vector< Real > V
 
typedef StdVector< Real > SV
 
typedef vector::size_type uint
 
typedef std::vector< Real > vector
 
typedef vector::size_type uint
 

Private Member Functions

ROL::Ptr< const vectorgetVector (const V &x)
 
ROL::Ptr< vectorgetVector (V &x)
 
void applyK (const Vector< Real > &v, Vector< Real > &kv)
 Apply finite difference operator.
 
void applyK (const Vector< Real > &v, Vector< Real > &kv)
 Apply finite difference operator.
 

Private Attributes

Real g_
 
uint nx_
 
Real dx_
 
ROL::Ptr< const vectorVp_
 
ROL::Ptr< const std::vector< Real > > Vp_
 
ROL::Ptr< FiniteDifference< Real > > fd_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Objective< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real>
class Objective_GrossPitaevskii< Real >

Objective Function Class

Definition at line 87 of file gross-pitaevskii/example_01.hpp.

Member Typedef Documentation

◆ vector [1/2]

template<class Real >
ptr Vp_ Pointer to potential Objective_GrossPitaevskii< Real >::vector
private

Definition at line 89 of file gross-pitaevskii/example_01.hpp.

◆ V

template<class Real >
typedef Vector<Real> Objective_GrossPitaevskii< Real >::V
private

Definition at line 90 of file gross-pitaevskii/example_01.hpp.

◆ SV

template<class Real >
typedef StdVector<Real> Objective_GrossPitaevskii< Real >::SV
private

Definition at line 91 of file gross-pitaevskii/example_01.hpp.

◆ uint [1/2]

template<class Real >
typedef vector::size_type Objective_GrossPitaevskii< Real >::uint
private

Definition at line 93 of file gross-pitaevskii/example_01.hpp.

◆ vector [2/2]

template<class Real >
typedef std::vector<Real> Objective_GrossPitaevskii< Real >::vector
private

Definition at line 457 of file gross-pitaevskii/example_02.hpp.

◆ uint [2/2]

template<class Real >
typedef vector::size_type Objective_GrossPitaevskii< Real >::uint
private

Definition at line 458 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

◆ Objective_GrossPitaevskii() [1/2]

template<class Real >
Objective_GrossPitaevskii< Real >::Objective_GrossPitaevskii ( const Real &  g,
const Vector< Real > &  V 
)
inline

◆ Objective_GrossPitaevskii() [2/2]

template<class Real >
Objective_GrossPitaevskii< Real >::Objective_GrossPitaevskii ( const Real &  g,
const Vector< Real > &  V,
ROL::Ptr< FiniteDifference< Real > >  fd 
)
inline

Member Function Documentation

◆ getVector() [1/2]

template<class Real >
ROL::Ptr< const vector > Objective_GrossPitaevskii< Real >::getVector ( const V x)
inlineprivate

◆ getVector() [2/2]

template<class Real >
ROL::Ptr< vector > Objective_GrossPitaevskii< Real >::getVector ( V x)
inlineprivate

◆ applyK() [1/2]

template<class Real >
void Objective_GrossPitaevskii< Real >::applyK ( const Vector< Real > &  v,
Vector< Real > &  kv 
)
inlineprivate

Apply finite difference operator.

Compute \(K\psi\), where \(K\) is the finite difference approximation of \(-D_x^2\)

Definition at line 125 of file gross-pitaevskii/example_01.hpp.

References Objective_GrossPitaevskii< Real >::dx_, Objective_GrossPitaevskii< Real >::getVector(), and Objective_GrossPitaevskii< Real >::nx_.

Referenced by Objective_GrossPitaevskii< Real >::gradient(), Objective_GrossPitaevskii< Real >::hessVec(), and Objective_GrossPitaevskii< Real >::value().

◆ value() [1/2]

template<class Real >
Real Objective_GrossPitaevskii< Real >::value ( const Vector< Real > &  psi,
Real &  tol 
)
inlinevirtual

Evaluate \(J[\psi]\).

\[ J[\psi]=\frac{1}{2} \int\limits_0^1 |\psi'|^2 + V(x)|\psi|^2+g|\psi|^4\,\mathrm{d}x \]

where the integral is approximated with the trapezoidal rule and the derivative is approximated using finite differences

Implements ROL::Objective< Real >.

Definition at line 159 of file gross-pitaevskii/example_01.hpp.

References Objective_GrossPitaevskii< Real >::applyK(), ROL::Vector< Real >::clone(), Objective_GrossPitaevskii< Real >::dx_, Objective_GrossPitaevskii< Real >::g_, Objective_GrossPitaevskii< Real >::getVector(), and Objective_GrossPitaevskii< Real >::nx_.

◆ gradient() [1/2]

template<class Real >
void Objective_GrossPitaevskii< Real >::gradient ( Vector< Real > &  g,
const Vector< Real > &  psi,
Real &  tol 
)
inlinevirtual

◆ hessVec() [1/2]

template<class Real >
void Objective_GrossPitaevskii< Real >::hessVec ( Vector< Real > &  hv,
const Vector< Real > &  v,
const Vector< Real > &  psi,
Real &  tol 
)
inlinevirtual

◆ applyK() [2/2]

template<class Real >
void Objective_GrossPitaevskii< Real >::applyK ( const Vector< Real > &  v,
Vector< Real > &  kv 
)
inlineprivate

Apply finite difference operator.

Compute \(K\psi\), where \(K\) is the finite difference approximation of \(-D_x^2\)

Definition at line 479 of file gross-pitaevskii/example_02.hpp.

References Objective_GrossPitaevskii< Real >::dx_, Objective_GrossPitaevskii< Real >::getVector(), and Objective_GrossPitaevskii< Real >::nx_.

◆ value() [2/2]

template<class Real >
Real Objective_GrossPitaevskii< Real >::value ( const Vector< Real > &  psi,
Real &  tol 
)
inlinevirtual

Evaluate \(J[\psi]\).

\[ J[\psi]=\frac{1}{2} \int\limits_0^1 |\psi'|^2 + V(x)|\psi|^2+g|\psi|^4\,\mathrm{d}x \]

where the integral is approximated with the trapezoidal rule and the derivative is approximated using finite differences

Implements ROL::Objective< Real >.

Definition at line 515 of file gross-pitaevskii/example_02.hpp.

References Objective_GrossPitaevskii< Real >::applyK(), Objective_GrossPitaevskii< Real >::dx_, Objective_GrossPitaevskii< Real >::fd_, Objective_GrossPitaevskii< Real >::g_, Objective_GrossPitaevskii< Real >::getVector(), and Objective_GrossPitaevskii< Real >::nx_.

◆ gradient() [2/2]

template<class Real >
void Objective_GrossPitaevskii< Real >::gradient ( Vector< Real > &  g,
const Vector< Real > &  psi,
Real &  tol 
)
inlinevirtual

◆ hessVec() [2/2]

template<class Real >
void Objective_GrossPitaevskii< Real >::hessVec ( Vector< Real > &  hv,
const Vector< Real > &  v,
const Vector< Real > &  psi,
Real &  tol 
)
inlinevirtual

Member Data Documentation

◆ g_

template<class Real >
Real Objective_GrossPitaevskii< Real >::g_
private

◆ nx_

template<class Real >
uint Objective_GrossPitaevskii< Real >::nx_
private

◆ dx_

template<class Real >
Real Objective_GrossPitaevskii< Real >::dx_
private

◆ Vp_ [1/2]

template<class Real >
ROL::Ptr<const vector> Objective_GrossPitaevskii< Real >::Vp_
private

◆ Vp_ [2/2]

template<class Real >
ROL::Ptr<const std::vector<Real> > Objective_GrossPitaevskii< Real >::Vp_
private

Definition at line 472 of file gross-pitaevskii/example_02.hpp.

◆ fd_

template<class Real >
ROL::Ptr<FiniteDifference<Real> > Objective_GrossPitaevskii< Real >::fd_
private

The documentation for this class was generated from the following files: