Class S2LatLngRectBase

java.lang.Object
com.google.common.geometry.S2LatLngRectBase
All Implemented Interfaces:
S2Region, Serializable
Direct Known Subclasses:
S2LatLngRect, S2LatLngRect.Builder

@GwtCompatible(serializable=false) public abstract class S2LatLngRectBase extends Object implements S2Region, Serializable
Base class for methods shared between the immutable S2LatLngRect and the mutable S2LatLngRect.Builder.
See Also:
  • Field Details

  • Constructor Details

    • S2LatLngRectBase

      S2LatLngRectBase(S2LatLng lo, S2LatLng hi)
      Constructs a rectangle from minimum and maximum latitudes and longitudes. If lo.lng() > hi.lng(), the rectangle spans the 180 degree longitude line. Both points must be normalized, with lo.lat() invalid input: '<'= hi.lat(). The rectangle contains all the points p such that 'lo' invalid input: '<'= p invalid input: '<'= 'hi', where 'invalid input: '<'=' is defined in the obvious way.
    • S2LatLngRectBase

      S2LatLngRectBase(R1Interval lat, S1Interval lng)
      Constructs a rectangle from latitude and longitude intervals. The two intervals must either be both empty or both non-empty, and the latitude interval must not extend outside [-90, +90] degrees. Note that both intervals (and hence the rectangle) are closed.
    • S2LatLngRectBase

      S2LatLngRectBase()
      Constructs a rectangle with lat and lng fields set to empty intervals, as defined in R1Interval and S1Interval.
  • Method Details

    • isValid

      public final boolean isValid()
      Returns true if the rectangle is valid, which essentially just means that the latitude bounds do not exceed Pi/2 in absolute value and the longitude bounds do not exceed Pi in absolute value. Also, if either the latitude or longitude bound is empty then both must be.
    • latLo

      public final S1Angle latLo()
    • latHi

      public final S1Angle latHi()
    • lngLo

      public final S1Angle lngLo()
    • lngHi

      public final S1Angle lngHi()
    • lat

      public abstract R1Interval lat()
      Returns the latitude range of this rectangle.
    • lng

      public abstract S1Interval lng()
      Returns the longitude range of this rectangle.
    • lo

      public final S2LatLng lo()
    • hi

      public final S2LatLng hi()
    • isEmpty

      public final boolean isEmpty()
      Returns true if the rectangle is empty, i.e. it contains no points at all.
    • isFull

      public final boolean isFull()
      Returns true if the rectangle is full, i.e. it contains all points.
    • isPoint

      public final boolean isPoint()
      Returns true if the rectangle is a point, i.e. lo() == hi()
    • isInverted

      public final boolean isInverted()
      Returns true if lng_.lo() > lng_.hi(), i.e. the rectangle crosses the 180 degree latitude line.
    • getVertex

      public final S2LatLng getVertex(int k)
      Returns the kth vertex of the rectangle (k = 0,1,2,3) in CCW order (lower-left, lower right, upper right, upper left).
    • getCenter

      public final S2LatLng getCenter()
      Returns the center of the rectangle in latitude-longitude space (in general this is not the center of the region on the sphere).
    • getDistance

      public final S1Angle getDistance(S2LatLng p)
      Returns the minimum distance (measured along the surface of the sphere) from a given point to the rectangle (both its boundary and its interior). The latLng must be valid.
    • getDistance

      public final S1Angle getDistance(S2LatLngRectBase other)
      Returns the minimum distance (measured along the surface of the sphere) to the given S2LatLngRectBase. Both S2LatLngRectBases must be non-empty.
    • getHausdorffDistance

      public final S1Angle getHausdorffDistance(S2LatLngRectBase other)
      Returns the undirected Hausdorff distance (measured along the surface of the sphere) to the given S2LatLngRect. The directed Hausdorff distance from rectangle A to rectangle B is given by h(A, B) = max_{p in A} min_{q in B} d(p, q). The Hausdorff distance between rectangle A and rectangle B is given by H(A, B) = max{h(A, B), h(B, A)}.
    • getDirectedHausdorffDistance

      public final S1Angle getDirectedHausdorffDistance(S2LatLngRectBase other)
      Returns the directed Hausdorff distance (measured along the surface of the sphere) to the given S2LatLngRect. The directed Hausdorff distance from rectangle A to rectangle B is given by h(A, B) = max_{p in A} min_{q in B} d(p, q). The Hausdorff distance between rectangle A and rectangle B is given by H(A, B) = max{h(A, B), h(B, A)}.
    • getDirectedHausdorffDistance

      private static S1Angle getDirectedHausdorffDistance(double lngDiff, R1Interval a, R1Interval b)
      Return the directed Hausdorff distance from one longitudinal edge spanning latitude range a_lat to the other longitudinal edge spanning latitude range b_lat, with their longitudinal difference given by lngDiff.
    • getBisectorIntersection

      private static S2Point getBisectorIntersection(R1Interval lat, double lng)
      Return the intersection of longitude 0 with the bisector of an edge on longitude 'lng' and spanning latitude range 'lat'.
    • getInteriorMaxDistance

      private static S1Angle getInteriorMaxDistance(R1Interval aLat, S2Point b)
      Return max distance from a point b to the segment spanning latitude range aLat on longitude 0, if the max occurs in the interior of aLat. Otherwise return -1.
    • getSize

      public final S2LatLng getSize()
      Returns the width and height of this rectangle in latitude-longitude space. Empty rectangles have a negative width and height.
    • getCentroid

      public final S2Point getCentroid()
    • contains

      public final boolean contains(S2LatLng ll)
      More efficient version of contains() that accepts a S2LatLng rather than an S2Point.
    • interiorContains

      public final boolean interiorContains(S2Point p)
      Returns true if and only if the given point is contained in the interior of the region (i.e. the region excluding its boundary). The point 'p' does not need to be normalized.
    • interiorContains

      public final boolean interiorContains(S2LatLng ll)
      More efficient version of interiorContains() that accepts a S2LatLng rather than an S2Point.
    • contains

      public final boolean contains(S2LatLngRectBase other)
      Returns true if and only if the rectangle contains the given other rectangle.
    • interiorContains

      public final boolean interiorContains(S2LatLngRectBase other)
      Returns true if and only if the interior of this rectangle contains all points of the given other rectangle (including its boundary).
    • intersects

      public final boolean intersects(S2LatLngRectBase other)
      Returns true if this rectangle and the given other rectangle have any points in common.
    • intersects

      public final boolean intersects(S2Cell cell)
      Returns true if this rectangle intersects the given cell. (This is an exact test and may be fairly expensive, see also MayIntersect below.)
    • interiorIntersects

      public final boolean interiorIntersects(S2LatLngRectBase other)
      Returns true if and only if the interior of this rectangle intersects any point (including the boundary) of the given other rectangle.
    • boundaryIntersects

      public final boolean boundaryIntersects(S2Point v0, S2Point v1)
      Returns true if the boundary of this rectangle intersects the given geodesic edge (v0, v1).
    • area

      public final double area()
      Returns the surface area of this rectangle on the unit sphere.
    • equals

      public final boolean equals(Object that)
      Returns true if these are the same type of rectangle and contain the same set of points.
      Overrides:
      equals in class Object
    • approxEquals

      public final boolean approxEquals(S2LatLngRectBase other, double maxError)
      Returns true if the latitude and longitude intervals of the two rectangles are the same up to the given tolerance. See R1Interval and S1Interval for details.
    • approxEquals

      public final boolean approxEquals(S2LatLngRectBase other)
      Returns true if this rectangle is very nearly identical to the given other rectangle.
    • approxEquals

      public final boolean approxEquals(S2LatLngRectBase other, S2LatLng maxError)
      As approxEquals(S2LatLngRectBase, double), but with separate tolerances for latitude and longitude.
    • hashCode

      public final int hashCode()
      Overrides:
      hashCode in class Object
    • getCapBound

      public S2Cap getCapBound()
      Description copied from interface: S2Region
      Return a bounding spherical cap.
      Specified by:
      getCapBound in interface S2Region
    • contains

      public final boolean contains(S2Cell cell)
      Returns true if this latitude/longitude region contains the given cell. A latitude-longitude rectangle contains a cell if and only if it contains the cell's bounding rectangle, making this an exact test. Note, however, that the cell must be valid; an error may result if e.g. S2CellId.sentinel() is passed here.
      Specified by:
      contains in interface S2Region
    • mayIntersect

      public final boolean mayIntersect(S2Cell cell)
      This test is cheap but is NOT exact. Use Intersects() if you want a more accurate and more expensive test. Note that when this method is used by an S2RegionCoverer, the accuracy isn't all that important since if a cell may intersect the region then it is subdivided, and the accuracy of this method goes up as the cells get smaller.
      Specified by:
      mayIntersect in interface S2Region
    • contains

      public final boolean contains(S2Point p)
      The point 'p' does not need to be normalized.
      Specified by:
      contains in interface S2Region
    • intersectsLngEdge

      public static final boolean intersectsLngEdge(S2Point a, S2Point b, R1Interval lat, double lng)
      Returns true if the edge AB intersects the given edge of constant longitude.
    • intersectsLatEdge

      public static final boolean intersectsLatEdge(S2Point a, S2Point b, double lat, S1Interval lng)
      Returns true if the edge AB intersects the given edge of constant latitude.
    • toString

      public final String toString()
      Overrides:
      toString in class Object
    • toStringDegrees

      public final String toStringDegrees()