{-# LANGUAGE FlexibleContexts, FlexibleInstances, MultiParamTypeClasses #-}
module Data.Graph.Inductive.Monad.STArray(
SGr(..), GraphRep, Context', USGr,
defaultGraphSize, emptyN,
removeDel,
) where
import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Monad
import Control.Monad
import Control.Monad.ST
import Data.Array
import Data.Array.ST
import System.IO.Unsafe
newtype SGr s a b = SGr (GraphRep s a b)
type GraphRep s a b = (Int,Array Node (Context' a b),STArray s Node Bool)
type Context' a b = Maybe (Adj b,a,Adj b)
type USGr s = SGr s () ()
showGraph :: (Show a,Show b) => GraphRep RealWorld a b -> String
showGraph :: forall a b. (Show a, Show b) => GraphRep RealWorld a b -> String
showGraph (Node
_,Array Node (Context' a b)
a,STArray RealWorld Node Bool
m) = (Node -> String) -> [Node] -> String
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Node -> String
showAdj (Array Node (Context' a b) -> [Node]
forall i e. Ix i => Array i e -> [i]
indices Array Node (Context' a b)
a)
where showAdj :: Node -> String
showAdj Node
v | ST RealWorld Bool -> Bool
forall a. ST RealWorld a -> a
unsafeST (STArray RealWorld Node Bool -> Node -> ST RealWorld Bool
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> i -> m e
readArray STArray RealWorld Node Bool
m Node
v) = String
""
| Bool
otherwise = case Array Node (Context' a b)
aArray Node (Context' a b) -> Node -> Context' a b
forall i e. Ix i => Array i e -> i -> e
!Node
v of
Context' a b
Nothing -> String
""
Just (Adj b
_,a
l,Adj b
s) -> Char
'\n'Char -> String -> String
forall a. a -> [a] -> [a]
:Node -> String
forall a. Show a => a -> String
show Node
vString -> String -> String
forall a. [a] -> [a] -> [a]
++String
":"String -> String -> String
forall a. [a] -> [a] -> [a]
++a -> String
forall a. Show a => a -> String
show a
lString -> String -> String
forall a. [a] -> [a] -> [a]
++String
"->"String -> String -> String
forall a. [a] -> [a] -> [a]
++Adj b -> String
forall a. Show a => a -> String
show Adj b
s'
where s' :: Adj b
s' = ST RealWorld (Adj b) -> Adj b
forall a. ST RealWorld a -> a
unsafeST (STArray RealWorld Node Bool -> Adj b -> ST RealWorld (Adj b)
forall s b. STArray s Node Bool -> Adj b -> ST s (Adj b)
removeDel STArray RealWorld Node Bool
m Adj b
s)
unsafeST :: ST RealWorld a -> a
unsafeST :: forall a. ST RealWorld a -> a
unsafeST = IO a -> a
forall a. IO a -> a
unsafePerformIO (IO a -> a) -> (ST RealWorld a -> IO a) -> ST RealWorld a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ST RealWorld a -> IO a
forall a. ST RealWorld a -> IO a
stToIO
instance (Show a,Show b) => Show (SGr RealWorld a b) where
show :: SGr RealWorld a b -> String
show (SGr GraphRep RealWorld a b
g) = GraphRep RealWorld a b -> String
forall a b. (Show a, Show b) => GraphRep RealWorld a b -> String
showGraph GraphRep RealWorld a b
g
instance GraphM (ST s) (SGr s) where
emptyM :: forall a b. ST s (SGr s a b)
emptyM = Node -> ST s (SGr s a b)
forall s a b. Node -> ST s (SGr s a b)
emptyN Node
defaultGraphSize
isEmptyM :: forall a b. ST s (SGr s a b) -> ST s Bool
isEmptyM ST s (SGr s a b)
g = do {SGr (n,_,_) <- ST s (SGr s a b)
g; return (n==0)}
matchM :: forall a b. Node -> ST s (SGr s a b) -> ST s (Decomp (SGr s) a b)
matchM Node
v ST s (SGr s a b)
g = do g'@(SGr (n,a,m)) <- ST s (SGr s a b)
g
case a!v of
Context' a b
Nothing -> Decomp (SGr s) a b -> ST s (Decomp (SGr s) a b)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (Context a b)
forall a. Maybe a
Nothing,SGr s a b
g')
Just (Adj b
pr,a
l,Adj b
su) ->
do b <- STArray s Node Bool -> Node -> ST s Bool
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> i -> m e
readArray STArray s Node Bool
m Node
v
if b then return (Nothing,g') else
do s <- removeDel m su
p' <- removeDel m pr
let p = ((b, Node) -> Bool) -> Adj b -> Adj b
forall a. (a -> Bool) -> [a] -> [a]
filter ((Node -> Node -> Bool
forall a. Eq a => a -> a -> Bool
/=Node
v)(Node -> Bool) -> ((b, Node) -> Node) -> (b, Node) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(b, Node) -> Node
forall a b. (a, b) -> b
snd) Adj b
p'
writeArray m v True
return (Just (p,v,l,s),SGr (n-1,a,m))
mkGraphM :: forall a b. [LNode a] -> [LEdge b] -> ST s (SGr s a b)
mkGraphM [LNode a]
vs [LEdge b]
es = do m <- (Node, Node) -> Bool -> ST s (STArray s Node Bool)
forall i. Ix i => (i, i) -> Bool -> ST s (STArray s i Bool)
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Node
1,Node
n) Bool
False
return (SGr (n,pr,m))
where nod :: Array Node (Maybe ([a], a, [a]))
nod = (Node, Node)
-> [(Node, Maybe ([a], a, [a]))]
-> Array Node (Maybe ([a], a, [a]))
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
array (Node, Node)
bnds ((LNode a -> (Node, Maybe ([a], a, [a])))
-> [LNode a] -> [(Node, Maybe ([a], a, [a]))]
forall a b. (a -> b) -> [a] -> [b]
map (\(Node
v,a
l)->(Node
v,([a], a, [a]) -> Maybe ([a], a, [a])
forall a. a -> Maybe a
Just ([],a
l,[]))) [LNode a]
vs)
su :: Array Node (Maybe ([a], a, [(b, Node)]))
su = (Maybe ([a], a, [(b, Node)])
-> (b, Node) -> Maybe ([a], a, [(b, Node)]))
-> Array Node (Maybe ([a], a, [(b, Node)]))
-> [(Node, (b, Node))]
-> Array Node (Maybe ([a], a, [(b, Node)]))
forall i e a.
Ix i =>
(e -> a -> e) -> Array i e -> [(i, a)] -> Array i e
accum Maybe ([a], a, [(b, Node)])
-> (b, Node) -> Maybe ([a], a, [(b, Node)])
forall {a} {b} {a} {b}.
Maybe (a, b, [(a, b)]) -> (a, b) -> Maybe (a, b, [(a, b)])
addSuc Array Node (Maybe ([a], a, [(b, Node)]))
forall {a} {a}. Array Node (Maybe ([a], a, [a]))
nod ((LEdge b -> (Node, (b, Node))) -> [LEdge b] -> [(Node, (b, Node))]
forall a b. (a -> b) -> [a] -> [b]
map (\(Node
v,Node
w,b
l)->(Node
v,(b
l,Node
w))) [LEdge b]
es)
pr :: Array Node (Maybe ([(b, Node)], a, [(b, Node)]))
pr = (Maybe ([(b, Node)], a, [(b, Node)])
-> (b, Node) -> Maybe ([(b, Node)], a, [(b, Node)]))
-> Array Node (Maybe ([(b, Node)], a, [(b, Node)]))
-> [(Node, (b, Node))]
-> Array Node (Maybe ([(b, Node)], a, [(b, Node)]))
forall i e a.
Ix i =>
(e -> a -> e) -> Array i e -> [(i, a)] -> Array i e
accum Maybe ([(b, Node)], a, [(b, Node)])
-> (b, Node) -> Maybe ([(b, Node)], a, [(b, Node)])
forall {a} {b} {b} {c}.
Maybe ([(a, b)], b, c) -> (a, b) -> Maybe ([(a, b)], b, c)
addPre Array Node (Maybe ([(b, Node)], a, [(b, Node)]))
forall {a}. Array Node (Maybe ([a], a, [(b, Node)]))
su ((LEdge b -> (Node, (b, Node))) -> [LEdge b] -> [(Node, (b, Node))]
forall a b. (a -> b) -> [a] -> [b]
map (\(Node
v,Node
w,b
l)->(Node
w,(b
l,Node
v))) [LEdge b]
es)
bnds :: (Node, Node)
bnds = ([Node] -> Node
forall a. Ord a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum [Node]
vs',[Node] -> Node
forall a. Ord a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum [Node]
vs')
vs' :: [Node]
vs' = (LNode a -> Node) -> [LNode a] -> [Node]
forall a b. (a -> b) -> [a] -> [b]
map LNode a -> Node
forall a b. (a, b) -> a
fst [LNode a]
vs
n :: Node
n = [LNode a] -> Node
forall a. [a] -> Node
forall (t :: * -> *) a. Foldable t => t a -> Node
length [LNode a]
vs
addSuc :: Maybe (a, b, [(a, b)]) -> (a, b) -> Maybe (a, b, [(a, b)])
addSuc (Just (a
p,b
l',[(a, b)]
s)) (a
l,b
w) = (a, b, [(a, b)]) -> Maybe (a, b, [(a, b)])
forall a. a -> Maybe a
Just (a
p,b
l',(a
l,b
w)(a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
:[(a, b)]
s)
addSuc Maybe (a, b, [(a, b)])
Nothing (a, b)
_ = String -> Maybe (a, b, [(a, b)])
forall a. HasCallStack => String -> a
error String
"mkGraphM (SGr): addSuc Nothing"
addPre :: Maybe ([(a, b)], b, c) -> (a, b) -> Maybe ([(a, b)], b, c)
addPre (Just ([(a, b)]
p,b
l',c
s)) (a
l,b
w) = ([(a, b)], b, c) -> Maybe ([(a, b)], b, c)
forall a. a -> Maybe a
Just ((a
l,b
w)(a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
:[(a, b)]
p,b
l',c
s)
addPre Maybe ([(a, b)], b, c)
Nothing (a, b)
_ = String -> Maybe ([(a, b)], b, c)
forall a. HasCallStack => String -> a
error String
"mkGraphM (SGr): addPre Nothing"
labNodesM :: forall a b. ST s (SGr s a b) -> ST s [LNode a]
labNodesM ST s (SGr s a b)
g = do (SGr (_,a,m)) <- ST s (SGr s a b)
g
let getLNode [(Node, b)]
vs (Node
_,Maybe (a, b, c)
Nothing) = [(Node, b)] -> m [(Node, b)]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return [(Node, b)]
vs
getLNode [(Node, b)]
vs (Node
v,Just (a
_,b
l,c
_)) =
do b <- STArray s Node Bool -> Node -> m Bool
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> i -> m e
readArray STArray s Node Bool
m Node
v
return (if b then vs else (v,l):vs)
foldM getLNode [] (assocs a)
defaultGraphSize :: Int
defaultGraphSize :: Node
defaultGraphSize = Node
100
emptyN :: Int -> ST s (SGr s a b)
emptyN :: forall s a b. Node -> ST s (SGr s a b)
emptyN Node
n = do m <- (Node, Node) -> Bool -> ST s (STArray s Node Bool)
forall i. Ix i => (i, i) -> Bool -> ST s (STArray s i Bool)
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Node
1,Node
n) Bool
False
return (SGr (0,array (1,n) [(i,Nothing) | i <- [1..n]],m))
removeDel :: STArray s Node Bool -> Adj b -> ST s (Adj b)
removeDel :: forall s b. STArray s Node Bool -> Adj b -> ST s (Adj b)
removeDel STArray s Node Bool
m = ((b, Node) -> ST s Bool) -> [(b, Node)] -> ST s [(b, Node)]
forall (m :: * -> *) a.
Applicative m =>
(a -> m Bool) -> [a] -> m [a]
filterM (\(b
_,Node
v)->do {b<-STArray s Node Bool -> Node -> ST s Bool
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> i -> m e
readArray STArray s Node Bool
m Node
v;return (not b)})