
AutomGrp
—

A GAP4 Package
Version 1.3.2

by
Yevgen Muntyan

Bellevue, WA, USA

Dmytro Savchuk
Department of Mathematics and Statistics

University of South Florida, Tampa, FL, 33620, USA

muntyan@fastmail.fm

dmytro.savchuk@gmail.com

https://gap-packages.github.io/automgrp/

September 2019

Contents

1 Introduction 3

1.1 Short math background . 3

1.2 Installation instructions . 5

1.3 Quick example . 5

2 Properties and operations with groups and semigroups 9

2.1 Creation of groups and semigroups . 9

2.2 Basic properties of groups and semigroups 12

2.3 Operations with groups and semigroups . 16

2.4 Self-similar groups and semigroups defined by the wreath recursion 23

2.5 Contracting groups . 25

2.6 Rewriting Systems . 27

3 Properties and operations with group and semigroup elements 30

3.1 Creation of tree automorphisms and homomorphisms 30

3.2 Properties and attributes of tree automorphisms and homomorphisms 31

3.3 Operations with tree automorphisms and homomorphisms 33

3.4 Elements of groups and semigroups defined by wreath recursion 35

3.5 Elements of contracting groups . 36

4 Noninitial automata 37

4.1 Definition . 37

4.2 Tools . 38

5 Miscellaneous 43

5.1 Converters to and from FR package . 43

5.2 Trees . 45

5.3 Some predefined groups . 45

Index 49

Bibliography 52

1 Introduction
The AutomGrp package provides methods for computation with groups and semigroups generated by finite automata
or given by wreath recursions, as well as with their finitely generated subgroups, subsemigroups and elements.

The project originally started in 2000 mostly for personal use. It was gradually expanding during consequent years,
including both addition of new algorithms and simplification of user interface. It was used in the process of classifi-
cation of groups generated by 3-state automata over a 2-letter alphabet (see [BGK+08]), as well as many subsequent
papers.

First author thanks Sveta and Max Muntyan for their infinite patience and understanding. Second author thanks Olga,
Anna, Irina and Andrey Savchuk for their help and understanding. This project would be impossible without them.

We would like to express our warm gratitude to Rostislav Grigorchuk, Zoran Sunic, Volodymyr Nekrashevych, Iev-
gen Bondarenko, Rostyslav Kravchenko, Yaroslav and Maria Vorobets and Ben Steinberg for their support, valuable
comments, feature requests and constant interest in the project.

We also appreciate the code provided by Andrey Russev that was used to optimize the minimization of autmata
function. Last, but not the least, we want to thank the anonymous referee for a very detailed review and numeruous
constructive comments that significantly increased the quality of the accepted version of the package.

Both authors were partially supported by NSF grants DMS-0600975, DMS-0456185 and DMS-0308985. The second
author appreciates the support from the New Researcher Grant from University of South Florida and the Simons
Collaboration Grant from Simons Foundation.

1.1 Short math background

This package deals mostly with groups acting on rooted trees. In this section we recall necessary definitions and
notation that will be used throughout the manual. For more detailed introduction to the theory of groups generated by
automata we refer the reader to [GNS00].

The infinite connected tree with selected vertex, called the root, in which the degree of every vertex except the root is
d + 1 and the degree of the root is d is called the regular homogeneous rooted tree of degree d (or d-ary tree). The
rooted tree of degree 2 is called the binary tree.

The n-th level of the tree consists of all vertices located at distance n from the root (here we mean combinatorial
distance in the graph).

Similarly one defines spherically homogeneous (or spherically-transitive) rooted trees as rooted trees, such that the
degrees of all vertices at each level coincide (but may depend on the level).

Given a finite alphabet X = {1, 2, . . . , d} the set X∗ of all finite words over X may be endowed with the structure of a
d-ary tree in which the empty word /0 is the root, the level n in X∗ consists of the words of length n over X and every
vertex v has d children, labeled by vx, for x ∈ X.

Any automorphism f of a rooted tree T fixes the root and the levels. For any vertex v of the tree T each automorphism
f induces the automorphism f |v of the subtree of T hanging down from the vertex v by f |v(u) = w if f (vu) = v′w for
some v′ ∈ X|v| from the same level as v (here |v| denotes the combinatorial distance from v to the root of the tree).
This automorphism is called the section of f at v.

If the tree T is regular, then the subtrees hanging down from vertices of T are canonically isomorphic to T and, thus,
the sections of any automorphism f of T can be considered as automorphisms of T again.

4 Chapter 1. Introduction

A group G of automorphisms of a regular rooted tree T is called self-similar if all sections of every element of G
belong to G.

A self-similar group G is called contracting if there is a finite set N of elements of G, such that for any g in G there is a
level n such that all sections of g at vertices of levels bigger than n belong to N. The smallest set with such a property
is called the nucleus of G.

Any automorphism f of a rooted tree can be decomposed as

f = (f1, f2, . . . , fd)σ ,

where f1, . . . , fd are the sections of f at the vertices of the first level and σ is the permutation which permutes the
subtrees hanging down from these vertices.

This notation is very convenient for performing multiplication of elements. Throughout this manual and everywhere
in the package we use the right action of (semi)groups acting on trees and for automorphisms (homomorphisms) of
a tree f and g, the composition f · g means that f acts first. This is consistent with the order of multiplication of
permutations in GAP , even though some authors in the field prefer to use the left action. With this convention in
mind, If f = (f1, f2, . . . , fd)σ and g = (g1, g2, . . . , gd)π , then

f · g = (f1 · gσ(1), . . . , fd · gσ(d))σπ,

f−1 = (f−1
σ−1(1), . . . , f−1

σ−1(d))σ
−1.

The group of automorphisms of a rooted tree is said to be level-transitive if it acts transitively on each level of the tree.

Everything above applies also for homomorphisms of rooted trees (maps preserving the root and incidence relation of
the vertices). The only difference is that in this case we get semigroups and monoids of tree homomorphisms.

A special class of self-similar groups is the class of groups generated by finite automata. This class is especially nice
from the algorithmic point of view. Let us recall basic definitions.

A Mealy automaton (transducer, synchronous automaton, or, simply, automaton) is a tuple A = (Q,X, ρ, τ), where
Q is a set of states, X is a finite alphabet of cardinality d ≥ 2, ρ : Q × X → X is a map, called the output map,
τ : Q× X → Q is a map, called the transition map.

If for each state q in Q, the restriction ρq : X → X given by ρq(x) = ρ(q, x) is a permutation, the automaton is called
invertible.

If the set Q of states is finite, the automaton is called finite.

If some state q in Q of the automaton A is selected to be initial, the automaton is called initial and denoted Aq. If an
initial state is not specified, the automaton is called noninitial.

An initial automaton naturally acts on X∗ by homomorphisms (automorphisms in the case of an invertible automation)
in the following way. Given a word x1x2 . . . xn, the automaton starts at the initial state q, reads the first input letter x1,
outputs the letter ρq(x1) and changes its state to q1 = τ(q, x1). The rest of the input word is handled by the new state
q1 in the same way. Formally speaking, the functions ρ and τ can be extended to ρ: Q×X∗ → X∗ and τ: Q×X∗ → Q.

Given an automaton A the group G(A) of automorphisms of X∗ generated by all the states of A (as initial automata) is
called the automaton group defined by A.

Every automaton group is self-similar, because the section of Aq at vertex v is just Aτ(q,v).

A special case is the case of groups generated by finite automata and their subgroups. In this class we can solve the
word problem, which makes it much nicer from the computational point of view.

Finite automata are often described by recursive relations (or wreath recursion) of the form

q = (τ(q, 1), . . . , τ(q, d))ρq

Section 3. Quick example 5

for every state q. For example, the line a = (a, b)(1, 2), b = (a, b) describes the automaton with 2 states a and b, such
that a permutes the letters 1 and 2 of the alphabet X = {1, 2} and b does not; and, independently of the current state,
the automaton changes its initial state to a if it reads 1 and to b if it reads 2. This particular automaton generates the,
so-called, lamplighter group.

Semigroups generated by noninvertible automata are defined in a similar way.

1.2 Installation instructions

AutomGrp package requires GAP version at least 4.4.6 and FGA (Free Group Algorithms) package available at

http://www.gap-system.org/Packages/fga.html

The installation of the AutomGrp package follows the standard GAP rules, i.e. to install it unpack the archive into the
pkg directory of your GAP distribution. This will create automgrp subdirectory.

To load package issue the command

gap> LoadPackage("automgrp");

--

Loading AutomGrp 1.3 (Automata Groups and Semigroups)

by Yevgen Muntyan (muntyan@fastmail.fm)

Dmytro Savchuk (http://savchuk.myweb.usf.edu/)

Homepage: https://gap-packages.github.io/automgrp/

--

true

Note, that if the FR package by Laurent Bartholdi is installed as well, GAP will automatically load it, together with
the packages on which it depends. The FR package functionality partially overlaps with the one of AutomGrp. For the
user’s convenience and to expand the functionality of both packages, several converters (see operations AutomGrp2FR
(5.1.2) and FR2AutomGrp (5.1.1)) of the basic data types were implemented in AutomGrp.

To test the installation, issue the command

gap> Read(Filename(DirectoriesPackageLibrary("automgrp", "tst"), "testall.g"));

in the GAP command line.

1.3 Quick example

Here is how to define the Grigorchuk group and Basilica group.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

Similarly one can define a group (or semigroup) generated by a noninvertible automaton. As an example we consider
the semigroup of intermediate growth generated by the two state automaton ([BRS06])

gap> SG := AutomatonSemigroup("f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]");

< f0, f1 >

Another type of groups (semigroups) implemented in the package is the class of groups (semigroups) defined by
wreath recursion (finitely generated self-similar groups).

gap> WRG := SelfSimilarGroup("x=(1,y)(1,2),y=(z^-1,1)(1,2),z=(1,x*y)");

< x, y, z >

6 Chapter 1. Introduction

Now we can compute several properties of Grigorchuk Group, Basilica and SG

gap> IsFinite(Grigorchuk_Group);

false

gap> IsSphericallyTransitive(Grigorchuk_Group);

true

gap> IsFractal(Grigorchuk_Group);

true

gap> IsAbelian(Grigorchuk_Group);

false

gap> IsTransitiveOnLevel(Grigorchuk_Group, 4);

true

We can also check that Basilica and WRG are contracting and compute their nuclei

gap> IsContracting(Basilica);

true

gap> GroupNucleus(Basilica);

[1, u, v, u^-1, v^-1, u^-1*v, v^-1*u]

gap> IsContracting(WRG);

true

gap> GroupNucleus(WRG);

[1, y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1,

z*y^-1*x*y*z, x*y*z]

The group Grigorchuk Group is generated by a bounded automaton and, thus, is amenable (see [BKN10])

gap> IsGeneratedByBoundedAutomaton(Grigorchuk_Group);

true

gap> IsAmenable(Grigorchuk_Group);

true

We can compute the stabilizers of levels and vertices

gap> StabilizerOfLevel(Grigorchuk_Group, 2);

< a*b*a*d*a^-1*b^-1*a^-1, d, b*a*d*a^-1*b^-1, a*b*c*a^-1, b*a*b*a*b^-1*a^-1*b^

-1*a^-1, a*b*a*b*a*b^-1*a^-1*b^-1 >

gap> StabilizerOfVertex(Grigorchuk_Group, [2, 1]);

< a*b*a*d*a^-1*b^-1*a^-1, d, a*c*b^-1*a^-1, c, b, a*b*a*c*a^-1*b^-1*a^

-1, a*b*a*b*a^-1*b^-1*a^-1 >

In the case of a finite group we can produce an isomorphism into a permutation group

gap> f := IsomorphismPermGroup(Group(a,b));

[a, b] ->

[(1,2)(3,5)(4,6)(7,9)(8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)(23,

25)(24,26)(27,29)(28,30)(31,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,

15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)]

gap> Size(Image(f));

32

Here is how to find relations in Basilica between elements of length not greater than 5.

Section 3. Quick example 7

gap> FindGroupRelations(Basilica, 6);

v*u*v*u^-1*v^-1*u*v^-1*u^-1

v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1

[v*u*v*u^-1*v^-1*u*v^-1*u^-1, v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2,

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1]

Or relations in the subgroup 〈p = uv−1, q = vu〉

gap> FindGroupRelations([u*v^-1,v*u], ["p", "q"], 5);

q*p^2*q*p^-1*q^-2*p^-1

[q*p^2*q*p^-1*q^-2*p^-1]

Or relations in the semigroup SG

gap> FindSemigroupRelations(SG, 4);

f0^3 = f0

f0^2*f1 = f1

f1*f0^2 = f1

f1^3 = f1

[[f0^3, f0], [f0^2*f1, f1], [f1*f0^2, f1], [f1^3, f1]]

Some basic operations with elements are the following:

The function IsOne computes whether an element represents the trivial automorphism of the tree

gap> IsOne((a*b)^16);

true

Here is how to compute the order (this function might not stop in some cases)

gap> Order(a*b);

16

gap> Order(u^22*v^-15*u^2*v*u^10);

infinity

Note that the package contains many helpful notifications that can be enabled by changing InfoLevel for InfoAu-
tomGrp. In many situations level 3 provides additional information about the computation that can be used either to
track the progress or to extract the proof from the result as it can be done in the example below.

gap> SetInfoLevel(InfoAutomGrp,3);

gap> Order(u^22*v^-15*u^2*v*u^10);

#I v is obtained from (u^22*v^-15*u^2*v*u^10)^1

by taking sections and cyclic reductions at vertex [1, 1, 1, 1, 1, 1, 1, 1, 1]

#I v is obtained from (v)^2

by taking sections and cyclic reductions at vertex [1, 1]

infinity

One can check if a particular element acts spherically transitively on the tree (this function might not stop in some
cases)

gap> IsSphericallyTransitive(a*b);

false

gap> IsSphericallyTransitive(u*v);

true

The sections of an element can be obtained as follows

8 Chapter 1. Introduction

gap> Section(u*v^2*u, 2);

u^2*v

gap> Decompose(u*v^2*u);

(v, u^2*v)

gap> Decompose(u*v^2*u, 3);

(v, 1, 1, 1, u*v, 1, u, 1)(1,2)(5,6)

One can try to compute whether the elements of group WRG defined by wreath recursion are finite-state and calculate
corresponding automaton

gap> IsFiniteState(x*y^-1);

true

gap> AllSections(x*y^-1);

[x*y^-1, z, 1, x*y, y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1, z*y^-1*x*y*z,

y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, x*y*z, y, z^-1, y^-1*x^-1, z*y^-1]

gap> A := MealyAutomaton(x*y^-1);

<automaton>

gap> NumberOfStates(A);

15

To get the action of an element on a vertex or on a particular level of the tree use the following commands

gap> [1,2,1,1]^(a*b);

[2, 2, 1, 1]

gap> PermOnLevel(u*v^2*v, 3);

(1,6,4,8,2,5,3,7)

The action of the whole group Grigorchuk Group on some level can be computed via PermGroupOnLevel (see
2.3.1).

gap> PermGroupOnLevel(Grigorchuk_Group, 3);

Group([(1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,6), (1,3)(2,4), (5,6)])

gap> Size(last);

128

The next example shows how to find all elements of length at most 5 of order 16 in the Grigorchuk group.

gap> FindElements(Grigorchuk_Group, Order, 16, 5);

[a*b, b*a, c*a*d, d*a*c, a*b*a*d, a*c*a*d, a*d*a*b, a*d*a*c, b*a*d*a,

c*a*d*a, d*a*b*a, d*a*c*a, a*c*a*d*a, a*d*a*c*a, b*a*b*a*c, b*a*c*a*c,

c*a*b*a*b, c*a*c*a*b]

2
Properties and

operations with
groups and
semigroups

In this chapter we present the functionality applicable to groups and semigroups.

2.1 Creation of groups and semigroups
1 I AutomatonGroup(string[, bind vars]) O
I AutomatonGroup(list[, names, bind vars]) O
I AutomatonGroup(automaton[, bind vars]) O

Creates the self-similar group generated by the finite automaton, described by string or list, or by the argument
automaton.

The argument string is a conventional notation of the form name1=(name11,name12,...,name1d)perm1, name2=...

where each name* is a name of a state or 1, and each perm* is a permutation written in GAP notation. Trivial permu-
tations may be omitted. This function ignores whitespace, and states may be separated by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n states of an automaton. Each entry is of the form
[a1, ..., ad, p], where d ≥ 2 is the size of the alphabet the group acts on, ai are IsInt in {1, . . . , n} and represent
the sections of the corresponding state at all vertices of the first level of the tree; and p from SymmetricGroup(d)
describes the action of the corresponding state on the alphabet.

The optional argument names must be a list of names of generators of the group, corresponding to the states of the
automaton. These names are used to display elements of the resulting group.

If the optional argument bind vars is false the names of generators of the group are not assigned to the global
variables. The default value is true. One can use AssignGeneratorVariables function to assign these names
later, if they were not assigned when the group was created.

gap> AutomatonGroup("a=(a,b), b=(a, b)(1,2)");

< a, b >

gap> AutomatonGroup("a=(b,a,1)(2,3), b=(1,a,b)(1,2,3)");

< a, b >

gap> A := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> G := AutomatonGroup(A);

< a, b >

In the second form of this operation the definition of the first group looks like

10 Chapter 2. Properties and operations with groups and semigroups

gap> AutomatonGroup([[1, 2, ()], [1, 2, (1,2)]], ["a", "b"]);

< a, b >

2 I AutomatonSemigroup(string[, bind vars]) O
I AutomatonSemigroup(list[, names, bind vars]) O
I AutomatonSemigroup(automaton[, bind vars]) O

Creates the semigroup generated by the finite automaton, described by string or list, or by the argument automaton.

The argument string is a conventional notation of the form name1=(name11,name12,...,name1d)trans1, name2=...

where each name* is a name of a state or 1, and each trans* is either a permutation written in GAP notation, or a
list defining a transformation of the alphabet via Transformation(trans*). Trivial permutations may be omitted.
This function ignores whitespace, and states may be separated by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n states of the automaton. Each entry is of the form
[a1, · · ·, ad, p], where d ≥ 2 is the size of the alphabet the group acts on, ai are IsInt in {1, . . . , n} and represent the
sections of the corresponding state at all vertices of the first level of the tree; and p is a transformation of the alphabet
describing the action of the corresponding state on the alphabet.

The optional arguments names and bind vars have the same meaning as in AutomatonGroup (see 2.1.1).

gap> AutomatonSemigroup("a=(a, b)[2,2], b=(a,b)(1,2)");

< a, b >

gap> AutomatonSemigroup("a=(b,a,1)[1,1,3], b=(1,a,b)(1,2,3)");

< 1, a, b >

gap> A := MealyAutomaton("f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]");

<automaton>

gap> G := AutomatonSemigroup(A);

< f0, f1 >

In the second form of this operation the definition of the second semigroup looks like

gap> AutomatonSemigroup([[1,2,Transformation([2,2])], [1,2,(1,2)]], ["a","b"]);

< a, b >

3 I SelfSimilarGroup(string[, bind vars]) O
I SelfSimilarGroup(list[, names, bind vars]) O
I SelfSimilarGroup(automaton[, bind vars]) O

Creates the self-similar group generated by the wreath recursion, described by string or list, or given by the argument
automaton.

The argument string is a conventional notation of the form name1=(word11,word12,...,word1d)perm1, name2=...

where each name* is a name of a state, word* is an associative word over the alphabet consisting of all name*, and
each perm* is a permutation written in GAP notation. Trivial permutations may be omitted. This function ignores
whitespace, and states may be separated by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n generators of the group. Each entry is of the form
[a1, ..., ad, p], where d ≥ 2 is the size of the alphabet the group acts on, ai are lists acceptable by AssocWordByLet-

terRep (e.g. if the names of generators are x, y and z, then [1, 1, -2, -2, 1, 3] will produce x^2*y^-2*x*z)
representing the sections of the corresponding generator at all vertices of the first level of the tree; and p from Sym-

metricGroup(d) describes the action of the corresponding generator on the alphabet.

The optional argument names must be a list of names of generators of the group. These names are used to display the
elements of the resulting group.

If the optional argument bind vars is false the names of generators of the group are not assigned to the global
variables. The default value is true. One can use AssignGeneratorVariables function to assign these names
later, if they were not assigned when the group was created.

Section 1. Creation of groups and semigroups 11

gap> SelfSimilarGroup("a=(a*b, b^-1), b=(1, b^2*a)(1,2)");

< a, b >

gap> SelfSimilarGroup("a=(b,a,a^-1)(2,3), b=(1,a*b,b)(1,2,3)");

< a, b >

gap> A := MealyAutomaton("f0=(f0,f0)(1,2),f1=(f1,f0)");

<automaton>

gap> SelfSimilarGroup(A);

< f0, f1 >

In the second form of this operation the definition of the first group looks like

gap> SelfSimilarGroup([[[1,2], [-2], ()], [[], [2,2,1], (1,2)]], ["a","b"]);

< a, b >

4 I SelfSimilarSemigroup(string[, bind vars]) O
I SelfSimilarSemigroup(list[, names, bind vars]) O
I SelfSimilarSemigroup(automaton[, bind vars]) O

Creates the semigroup generated by the wreath recursion, described by string or list, or given by the argument au-
tomaton. Note, that on the contrary to AutomatonSemigroup (2.1.2) in some cases the defined semigroup may not
be self-similar, since the sections of generators may include inverses of generators or trivial homomorphisms, not
included in the semigroup generated by the generators. If one needs to have self-similarity it is always possible to
include the necessary sections in the generating set.

The argument string is a conventional notation of the form name1=(word11,word12,...,word1d)trans1, name2=...

where each name* is a name of a state, word* is an associative word over the alphabet consisting of all name*, and
each trans* is either a permutation written in GAP notation, or a list defining a transformation of the alphabet via
Transformation(trans*). Trivial permutations may be omitted. This function ignores whitespace, and states may
be separated by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n generators of the semigroup. Each entry is of
the form [a1, ..., ad, p], where d ≥ 2 is the size of the alphabet the semigroup acts on, ai are lists acceptable by As-

socWordByLetterRep (e.g. if the names of generators are x, y and z, then [1, 1, 2, 3] will produce x^2*y*z)
representing the sections of the corresponding generator at all vertices of the first level of the tree; and p is a transfor-
mation of the alphabet describing the action of the corresponding generator.

The optional arguments names and bind vars have the same meaning as in SelfSimilarGroup (see 2.1.3).

gap> SelfSimilarSemigroup("a=(a*b,b)[1,1], b=(a,b^2*a)(1,2)");

< a, b >

gap> SelfSimilarSemigroup("a=(b,a,a^3)(2,3), b=(1,a*b,b^-1)(1,2,3)");

< a, b >

gap> A := MealyAutomaton("f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]");

<automaton>

gap> SelfSimilarSemigroup(A);

< f0, f1 >

In the second form of this operation the definition of the first semigroup looks like

gap> SelfSimilarSemigroup([[[1,2], [2], ()], [[1], [2,2,1], (1,2)]],["a","b"]);

< a, b >

5 I IsTreeAutomorphismGroup(G) C

The category of groups of tree automorphisms.

6 I IsAutomGroup(G) C

The category of groups generated by finite invertible initial automata (elements from category IsAutom).

12 Chapter 2. Properties and operations with groups and semigroups

7 I IsAutomatonGroup(G) P

is true if G is created using the command AutomatonGroup (2.1.1) or if the generators of G coincide with the
generators of the corresponding family, and false otherwise. To test whether G is self-similar use IsSelfSimilar
(2.2.8) command.

8 I IsSelfSimGroup(G) C

The category of groups whose generators are defined using wreath recursion (elements from category IsSelfSim).
These groups need not be self-similar.

9 I IsSelfSimilarGroup(G) P

is true if G is created using the command SelfSimilarGroup (2.1.3) or if the generators of G coincide with the
generators of the corresponding family, and false otherwise. To test whether G is self-similar use IsSelfSimilar
(2.2.8) command.

2.2 Basic properties of groups and semigroups
1 I TopDegreeOfTree(obj) A

Returns the degree of the tree on the first level, i.e. the number of vertices adjacent to the root vertex.

2 I DegreeOfTree(obj) A

This is a synonym for TopDegreeOfTree (2.2.1) for the case of a regular tree. It is an error to call this method for an
object which acts on a non-regular tree.

3 I IsFractal(G) P

Returns whether the group G is fractal (also called as self-replicating). In other words, if G acts transitively on the first
level and for any vertex v of the tree the projection of the stabilizer of v in G on this vertex coincides with the whole
group G.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsFractal(Grigorchuk_Group);

true

4 I IsFractalByWords(G) P

Computes the generators of stabilizers of vertices of the first level and their projections on these vertices. Returns
true if the preimages of these projections in the free group under the canonical epimorphism generate the whole free
group for each stabilizer, and the G acts transitively on the first level. This is sufficient but not necessary condition for
G to be fractal. See also IsFractal (2.2.3).

5 I IsSphericallyTransitive(G) P

Returns whether the group G is spherically transitive (see 1.1).

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsSphericallyTransitive(Grigorchuk_Group);

true

6 I ContainsSphericallyTransitiveElement(G) A

For a self-similar group G acting on a binary tree returns true if G contains an element acting spherically transitively
on the levels of the tree and false otherwise. See also SphericallyTransitiveElement (2.3.15).

Section 2. Basic properties of groups and semigroups 13

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> ContainsSphericallyTransitiveElement(Basilica);

true

gap> G := SelfSimilarGroup("a=(a^-1*b^-1,1)(1,2), b=(b^-1,a*b)");

< a, b >

gap> ContainsSphericallyTransitiveElement(G);

false

7 I IsTransitiveOnLevel(G, lev) O

Returns whether the group (semigroup) G acts transitively on level lev.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsTransitiveOnLevel(Group([a,b]),3);

true

gap> IsTransitiveOnLevel(Group([a,b]),4);

false

8 I IsSelfSimilar(G) P

Returns whether the group or semigroup G is self-similar (see 1.1).

9 I IsContracting(G) A

Given a self-similar group G tries to compute whether it is contracting or not. Only a partial method is implemented
(since there is no general algorithm so far). First it tries to find the nucleus up to size 50 using FindNucleus(G,50)
(see 2.3.18), then it tries to find evidence that the group is noncontracting using IsNoncontracting(G,10,10)
(see 2.2.10). If the answer was not found one can try to use FindNucleus and IsNoncontracting with bigger
parameters. Also one can use SetInfoLevel(InfoAutomGrp, 3) for more information to be displayed.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> IsContracting(Basilica);

true

gap> IsContracting(AutomatonGroup("a=(c,a)(1,2), b=(c,b), c=(b,a)"));

false

10 I IsNoncontracting(G[, max len, depth]) F

Tries to show that the group G is not contracting. Enumerates the elements of the group G up to length max len
until it finds an element which has a section g of infinite order, such that OrderUsingSections(g, depth) (see
3.2.6) returns infinity and such that g stabilizes some vertex and has itself as a section at this vertex. See also
IsContracting (2.2.9).

If max len and depth are omitted they are assumed to be infinity and 10, respectively.

If InfoLevel of InfoAutomGrp is greater than or equal to 3 (one can set it by SetInfoLevel(InfoAutomGrp,

3)), then the proof is printed.

gap> G := AutomatonGroup("a=(b,a)(1,2), b=(c,b), c=(c,a)");

< a, b, c >

gap> IsNoncontracting(G);

true

gap> H := AutomatonGroup("a=(c,b)(1,2), b=(b,a), c=(a,a)");

< a, b, c >

gap> SetInfoLevel(InfoAutomGrp, 3);

14 Chapter 2. Properties and operations with groups and semigroups

gap> IsNoncontracting(H);

#I There are 37 elements of length up to 2

#I There are 187 elements of length up to 3

#I a^2*c^-1*b^-1 is obtained from (a^2*c^-1*b^-1)^2

by taking sections and cyclic reductions at vertex [1, 1]

#I a^2*c^-1*b^-1 has b*c*a^-2 as a section at vertex [2]

true

11 I IsGeneratedByAutomatonOfPolynomialGrowth(G) P

For a group G generated by all states of a finite automaton (see 2.1.7) determines whether this automaton has polyno-
mial growth in terms of Sidki [Sid00].

See also operations IsGeneratedByBoundedAutomaton (2.2.12) and PolynomialDegreeOfGrowthOfUnderlyin-
gAutomaton (2.2.13).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> IsGeneratedByAutomatonOfPolynomialGrowth(Basilica);

true

gap> D := AutomatonGroup("a=(a,b)(1,2), b=(b,a)");

< a, b >

gap> IsGeneratedByAutomatonOfPolynomialGrowth(D);

false

12 I IsGeneratedByBoundedAutomaton(G) P

For a group G generated by all states of a finite automaton (see 2.1.7) determines whether this automaton is bounded
in terms of Sidki [Sid00].

See also IsGeneratedByAutomatonOfPolynomialGrowth (2.2.11) and PolynomialDegreeOfGrowthOfUnder-

lyingAutomaton (2.2.13).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> IsGeneratedByBoundedAutomaton(Basilica);

true

gap> C := AutomatonGroup("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

< a, b, c >

gap> IsGeneratedByBoundedAutomaton(C);

false

13 I PolynomialDegreeOfGrowthOfUnderlyingAutomaton(G) A

For a group G generated by all states of a finite automaton (see 2.1.7) of polynomial growth in terms of Sidki [Sid00]
determines the degree of polynomial growth of this automaton. This degree is 0 if and only if the automaton is
bounded. If the growth of automaton is exponential returns fail.

See also IsGeneratedByAutomatonOfPolynomialGrowth (2.2.11) and IsGeneratedByBoundedAutomaton (2.2.12).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> PolynomialDegreeOfGrowthOfUnderlyingAutomaton(Basilica);

0

gap> C := AutomatonGroup("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

< a, b, c >

gap> PolynomialDegreeOfGrowthOfUnderlyingAutomaton(C);

2

Section 2. Basic properties of groups and semigroups 15

14 I IsOfSubexponentialGrowth(G[, len, depth]) O

Tries to check whether the growth function of a self-similar group G is subexponential. The main part of the algorithm
works as follows. It looks at all words of length up to len and if for some length l for each word of this length l the
sum of the lengths of all its sections at level depth is less then l, returns true. The default values of len and depth are
10 and 6 respectively. Setting SetInfoLevel(InfoAtomGrp, 3) will make it print for each length the words that
are not contracted. It also sometimes helps to use AG UseRewritingSystem (see 2.6.1).

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(Grigorchuk_Group);

gap> IsOfSubexponentialGrowth(Grigorchuk_Group,10,6);

true

15 I IsAmenable(G) P

In certain cases (for groups generated by bounded automata [BKN10], some virtually abelian groups or finite groups)
returns true if G is amenable.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsAmenable(Grigorchuk_Group);

true

16 I UnderlyingAutomaton(G) A

For a group (or semigroup) G returns an automaton generating a self-similar group (or semigroup) containing G.

gap> GS := AutomatonSemigroup("x=(x,y)[1,1], y=(y,y)(1,2)");

< x, y >

gap> A := UnderlyingAutomaton(GS);

<automaton>

gap> Display(A);

a1 = (a1, a2)[1, 1], a2 = (a2, a2)[2, 1]

For a subgroup of Basilica group we get the automaton generating Basilica group.

gap> H := Group([u*v^-1,v^2]);

< u*v^-1, v^2 >

gap> Display(UnderlyingAutomaton(H));

a1 = (a1, a1), a2 = (a3, a1)(1,2), a3 = (a2, a1)

17 I AutomatonList(G) AM

Returns an AutomatonList of UnderlyingAutomaton(G) (see 2.2.16).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> AutomatonList(Basilica);

[[2, 5, (1,2)], [1, 5, ()], [5, 4, (1,2)], [3, 5, ()], [5, 5, ()]]

18 I RecurList(G) AM

Returns an internal representation of the wreath recursion of the self-similar group (semigroup) containing G.

gap> R := SelfSimilarGroup("a=(a^-1*b,b^-1*a)(1,2), b=(a^-1,b^-1)");

< a, b >

gap> RecurList(R);

[[[-1, 2], [-2, 1], (1,2)], [[-1], [-2], ()],

[[-1, 2], [-2, 1], (1,2)], [[1], [2], ()]]

16 Chapter 2. Properties and operations with groups and semigroups

2.3 Operations with groups and semigroups
1 I PermGroupOnLevel(G, k) O

Returns the group of permutations induced by the action of the group G at the k-th level.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> PermGroupOnLevel(Basilica, 4);

Group([(1,11,3,9)(2,12,4,10)(5,13)(6,14)(7,15)(8,16), (1,6,2,5)(3,7)(4,8)])

gap> H := PermGroupOnLevel(Group([u,v^2]),4);

Group([(1,11,3,9)(2,12,4,10)(5,13)(6,14)(7,15)(8,16), (1,2)(5,6)])

gap> Size(H);

64

2 I TransformationSemigroupOnLevel(G, k) O

Returns the semigroup of transformations induced by the action of the semigroup G at the k-th level.

gap> S := AutomatonSemigroup("y=(1,u)[1,1],u=(y,u)(1,2)");

< 1, y, u >

gap> T := TransformationSemigroupOnLevel(S,3);

<transformation monoid on 8 pts with 2 generators>

gap> Size(T);

11

3 I StabilizerOfLevel(G, k) O

Returns the stabilizer of the k-th level.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> StabilizerOfLevel(Basilica, 2);

< u^2, v^2, u*v^2*u^-1, v*u^2*v^-1, u*v*u^2*v^-1*u^-1, (v*u)^2*(v^-1*u^-1)^2, v*u*\

v^2*u^-1*v^-1, (u*v)^2*u*v^-1*u^-1*v^-1, (u*v)^2*v*u^-1*v^-1*u^-1 >

4 I StabilizerOfFirstLevel(G) A

Returns the stabilizer of the first level, see also 2.3.3.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> StabilizerOfFirstLevel(Basilica);

< v, u^2, u*v*u^-1 >

5 I StabilizerOfVertex(G, v) O

Returns the stabilizer of the vertex v. Here v can be a list representing a vertex, or a positive integer representing a
vertex at the first level.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> StabilizerOfVertex(Basilica, [1,2,1]);

< u^2, u*v*u^-1, v^2, v*u*v*u^-1*v^-1, v*u^-1*v*u*v^-1, v*u^4*v^-1, v*u^2*v^2*u^-2\

*v^-1, (v*u^2)^2*v^-1*u^-2*v^-1, v*u*(u*v)^2*u^-1*v^-1*u^-2*v^-1 >

6 I FixesLevel(obj, lev) O

Returns whether obj fixes level lev, i.e. fixes every vertex at the level lev.

Section 3. Operations with groups and semigroups 17

7 I FixesVertex(obj, v) O

Returns whether obj fixes the vertex v. The vertex v may be given as a list, or as a positive integer, in which case it
denotes the v-th vertex at the first level.

8 I Projection(G, v) O
I ProjectionNC(G, v) O

Returns the projection of the group G at the vertex v. The group G must fix the vertex v, otherwise Error() will be
called. The operation ProjectionNC does the same thing, except it does not check whether G fixes the vertex v.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> Projection(StabilizerOfVertex(Basilica, [1,2,1]), [1,2,1]);

< u, v >

9 I ProjStab(G, v) O

Returns the projection of the stabilizer of v at itself. It is a shortcut for Projection(StabilizerOfVertex(G, v), v)
(see 2.3.8, 2.3.5).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> ProjStab(Basilica, [1,2,1]);

< u, v >

10 I FindGroupRelations(G[, max len, max num rels]) O
I FindGroupRelations(subs words[, names, max len, max num rels]) O

Finds group relations between the generators of the group G or in the group generated by subs words. Stops after in-
vestigating all words of length up to max len elements or when it finds max num rels relations. The optional argument
names is a list of names of generators of the same length as subs words. If this argument is given the relations are given
in terms of these names. Otherwise they are given in terms of the elements of the group generated by subs words. If
max len or max num rels are not specified, they are assumed to be infinity. Note that if the rewring system (see
2.6.1) for group G is used, then this operation returns relations not contained in the rewriting system rules (see 2.6.4).
This operation can be applied to any group, not only to a group generated by automata.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> FindGroupRelations(Basilica, 6);

v*u*v*u^-1*v^-1*u*v^-1*u^-1

v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1

[v*u*v*u^-1*v^-1*u*v^-1*u^-1, v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2,

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1]

gap> FindGroupRelations([u*v^-1, v*u], ["x", "y"], 5);

y*x^2*y*x^-1*y^-2*x^-1

[y*x^2*y*x^-1*y^-2*x^-1]

gap> FindGroupRelations([u*v^-1, v*u], 5);

u^-2*v*u^-2*v^-1*u^2*v*u^2*v^-1

[u^-2*v*u^-2*v^-1*u^2*v*u^2*v^-1]

gap> FindGroupRelations([(1,2)(3,4), (1,2,3)], ["x", "y"]);

x^2

y^-3

(y^-1*x)^3

[x^2, y^-3, (y^-1*x)^3]

18 Chapter 2. Properties and operations with groups and semigroups

11 I FindSemigroupRelations(G[, max len, max num rels]) O
I FindSemigroupRelations(subs words[, names, max len, max num rels]) O

Finds semigroup relations between the generators of the group or semigroup G, or in the semigroup generated by
subs words. The arguments have the same meaning as in FindGroupRelations (2.3.10). It returns a list of pairs of
equal words. In order to make the list of relations shorter it also tries to remove relations that can be derived from the
known ones. Note, that by default the trivial automorphism is not included in every semigroup. So if one needs to find
relations of the form w = 1 one has to define G as a monoid or to include the trivial automorphism into subs words
(for instance, as One(g) for any element g acting on the same tree). This operation can be applied for any semigroup,
not only for a semigroup generated by automata.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> FindSemigroupRelations([u*v^-1, v*u], ["x", "y"], 6);

y*x^2*y=x*y^2*x

y*x^3*y^2=x^2*y^3*x

y^2*x^3*y=x*y^3*x^2

[[y*x^2*y, x*y^2*x], [y*x^3*y^2, x^2*y^3*x], [y^2*x^3*y, x*y^3*x^2]]

gap> FindSemigroupRelations([u*v^-1, v*u],6);

v*u^2*v^-1*u^2 = u^2*v*u^2*v^-1

v*u*(u*v^-1)^2*u^2*v*u = u*v^-1*u*(u*v)^2*u^2*v^-1

(v*u)^2*(u*v^-1)^2*u^2 = u*(u*v)^2*u*(u*v^-1)^2

[[v*u^2*v^-1*u^2, u^2*v*u^2*v^-1],

[v*u*(u*v^-1)^2*u^2*v*u, u*v^-1*u*(u*v)^2*u^2*v^-1],

[(v*u)^2*(u*v^-1)^2*u^2, u*(u*v)^2*u*(u*v^-1)^2]]

gap> x := Transformation([1,1,2]);;

gap> y := Transformation([2,2,3]);;

gap> FindSemigroupRelations([x,y],["x","y"]);

y*x=x

y^2=y

x^3=x^2

x^2*y=x*y

[[y*x, x], [y^2, y], [x^3, x^2], [x^2*y, x*y]]

12 I Iterator(G[, max len]) M

Provides a possibility to loop over elements of a group (semigroup, monoid) generated by automata. If max len is
given, it stops after enumerating all elements of length up to max len.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> iter := Iterator(Grigorchuk_Group, 5);

<iterator>

gap> l:=[];;

gap> for g in iter do

> if Order(g)=16 then Add(l,g); fi;

> od;

gap> l;

[b*a, a*b, d*a*c, c*a*d, d*a*c*a, d*a*b*a, c*a*d*a, b*a*d*a, a*d*a*c,

a*d*a*b, a*c*a*d, a*b*a*d, c*a*c*a*b, c*a*b*a*b, b*a*c*a*c, b*a*b*a*c,

a*d*a*c*a, a*c*a*d*a]

Section 3. Operations with groups and semigroups 19

13 I FindElement(G, func, val, max len) O
I FindElements(G, func, val, max len) O

The first function enumerates elements of the group (semigroup, monoid) G until it finds an element g of length at
most max len, for which func(g)=val. Returns g if such an element was found and fail otherwise.

The second function enumerates elements of the group (semigroup, monoid) of length at most max len and returns
the list of elements g, for which func(g)=val.

These functions are based on Iterator operation (see 2.3.12), so can be applied in more general settings whenever
GAP knows how to solve word problem in the group. The following example illustrates how to find an element of
order 16 in Grigorchuk group and the list of all such elements of length at most 5.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> FindElement(Grigorchuk_Group, Order, 16, 5);

a*b

gap> FindElements(Grigorchuk_Group,Order,16,5);

[a*b, b*a, c*a*d, d*a*c, a*b*a*d, a*c*a*d, a*d*a*b, a*d*a*c, b*a*d*a, c*a*d*a,

d*a*b*a, d*a*c*a, a*c*a*d*a, a*d*a*c*a, (b*a)^2*c, b*(a*c)^2, c*(a*b)^2,

(c*a)^2*b]

14 I FindElementOfInfiniteOrder(G, max len, depth) O
I FindElementsOfInfiniteOrder(G, max len, depth) O

The first function enumerates elements of the group G up to length max len until it finds an element g of infinite order,
such that OrderUsingSections(g,depth) (see 3.2.6) is infinity. In other words all sections of every element up to
depth depth are investigated. In case if the element belongs to the group generated by bounded automaton (see 2.2.12)
one can set depth to be infinity.

The second function returns the list of all such elements up to length max len.

gap> G := AutomatonGroup("a=(1,1)(1,2), b=(a,c), c=(b,1)");

< a, b, c >

gap> FindElementOfInfiniteOrder(G, 5, 10);

a*b*c

15 I SphericallyTransitiveElement(G) A

For a self-similar group G acting on a binary tree returns an element of G acting spherically transitively on the levels
of the tree if such an element exists and fail otherwise. See also ContainsSphericallyTransitiveElement

(2.2.6).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> SphericallyTransitiveElement(Basilica);

u*v

gap> G := SelfSimilarGroup("a=(a^-1*b^-1,1)(1,2), b=(b^-1,a*b)");

< a, b >

gap> SphericallyTransitiveElement(G);

fail

16 I Growth(G, max len) O

Returns a list of the first values of the growth function of a group (semigroup, monoid) G. If G is a monoid it computes
the growth function at {0, 1, . . . ,max len}, and for a semigroup without identity at {1, . . . ,max len}.

20 Chapter 2. Properties and operations with groups and semigroups

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> Growth(Grigorchuk_Group, 7);

There are 11 elements of length up to 2

There are 23 elements of length up to 3

There are 40 elements of length up to 4

There are 68 elements of length up to 5

There are 108 elements of length up to 6

There are 176 elements of length up to 7

[1, 5, 11, 23, 40, 68, 108, 176]

gap> H := AutomatonSemigroup("a=(a,b)[1,1], b=(b,a)(1,2)");

< a, b >

gap> Growth(H,6);

[2, 6, 14, 30, 62, 126]

17 I ListOfElements(G, max len) O

Returns the list of all different elements of a group (semigroup, monoid) G up to length max len.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> ListOfElements(Grigorchuk_Group, 3);

[1, a, b, c, d, a*b, a*c, a*d, b*a, c*a, d*a, a*b*a, a*c*a, a*d*a, b*a*b,

b*a*c, b*a*d, c*a*b, c*a*c, c*a*d, d*a*b, d*a*c, d*a*d]

18 I FindNucleus(G[, max nucl, print info]) O

Given a self-similar group G it tries to find its nucleus. If G is not contracting it will loop forever. When it finds the
nucleus it returns the triple [GroupNucleus(G), GeneratingSetWithNucleus(G), GeneratingSetWithNucle-
usAutom(G)] (see 2.5.1, 2.5.2, 2.5.3).

If max nucl is given it stops after finding max nucl elements that need to be in the nucleus and returns fail if the
nucleus was not found.

An optional argument print info is a boolean telling whether to print results of intermediate computations. The default
value is true.

Use IsNoncontracting (see 2.2.10) to try to show that G is noncontracting.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> FindNucleus(Basilica);

Trying generating set with 5 elements

Elements added:[u^-1*v, v^-1*u]

Trying generating set with 7 elements

[[1, u, v, u^-1, v^-1, u^-1*v, v^-1*u],

[1, u, v, u^-1, v^-1, u^-1*v, v^-1*u], <automaton>]

19 I LevelOfFaithfulAction(G) A
I LevelOfFaithfulAction(G, max lev) A

For a given finite self-similar group G determines the smallest level of the tree, where G acts faithfully, i.e. the
stabilizer of this level in G is trivial. The idea here is that for a self-similar group all nontrivial level stabilizers are
different. If max lev is given it finds only first max lev quotients by stabilizers and if all of them have different size it
returns fail. If G is infinite and max lev is not specified it will loop forever.

See also IsomorphismPermGroup (2.3.20).

Section 3. Operations with groups and semigroups 21

gap> H := SelfSimilarGroup("a=(a,a)(1,2), b=(a,a), c=(b,a)(1,2)");

< a, b, c >

gap> LevelOfFaithfulAction(H);

3

gap> Size(H);

16

gap> Adding_Machine := AutomatonGroup("a=(1,a)(1,2)");

< a >

gap> LevelOfFaithfulAction(Adding_Machine, 10);

fail

20 I IsomorphismPermGroup(G) O
I IsomorphismPermGroup(G, max lev) O

For a given finite group G generated by initial automata or by elements defined by wreath recursion computes an
isomorphism from G into a finite permutational group. If G is not known to be self-similar (see 2.2.8) the isomorphism
is based on the regular representation, which works generally much slower. If G is self-similar there is a level of the
tree (see 2.3.19), where G acts faithfully. The corresponding representation is returned in this case. If max lev is given
it finds only the first max lev quotients by stabilizers and if all of them have different size it returns fail. If G is
infinite and max lev is not specified it will loop forever.

For example, consider a subgroup 〈a, b〉 of Grigorchuk group.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> f := IsomorphismPermGroup(Group(a, b));

MappingByFunction(< a, b >, Group(

[(1,2)(3,5)(4,6)(7,9)(8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)(23,

25)(24,26)(27,29)(28,30)(31,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,

15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)

]), function(g) ... end, function(b) ... end)

gap> Size(Image(f));

32

gap> H := SelfSimilarGroup("a=(a*b,1)(1,2), b=(1,b*a^-1)(1,2), c=(b, a*b)");

< a, b, c >

gap> f1 := IsomorphismPermGroup(H);

MappingByFunction(< a, b, c >, Group([(1,3)(2,4), (1,3)(2,4), (1,2)

]), function(g) ... end, function(b) ... end)

gap> Size(Image(f1));

8

gap> PreImagesRepresentative(f1, (1,3,2,4));

a*c

gap> (a*c)^f1;

(1,3,2,4)

21 I Random(G) O

Returns a random element of a group (semigroup) G. The operation is based on the generator of random elements in
free groups and semigroups.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> Random(Basilica);

v*u^-3

22 Chapter 2. Properties and operations with groups and semigroups

22 I MarkovOperator(G, lev, weights) O

Computes the matrix of the Markov operator related to the (semi)group G on the lev-th level of the tree. If G is
a group generated by g1, g2, . . . , gn, then the Markov operator is defined as (PermOnLevelAsMatrix(g1) + · · · +
PermOnLevelAsMatrix(gn)+ PermOnLevelAsMatrix(g−1

1)+ · · ·+ PermOnLevelAsMatrix(g−1
n))/(2 ∗ n). If S is

a semigroup generated by s1, s2, . . . , sn, then the Markov operator is defined similarly with PermOnLevelAsMatrix

being replaced with TransformationOnLevelAsMatrix. If the list of weights is given, uses its entries as coefficients
of operators correspondings to the generators of a group or semigroup. In the case of a group, the length of weights
must be twice as big as the number of generators of G. The list weights may consist either of numbers or of strings
representing the names of indeterminates. See also PermOnLevelAsMatrix (3.2.9) and TransformationOnLeve-

lAsMatrix (3.2.11).

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> MarkovOperator(L, 3);

[[0, 0, 1/4, 1/4, 0, 1/4, 0, 1/4], [0, 0, 1/4, 1/4, 1/4, 0, 1/4, 0],

[1/4, 1/4, 0, 0, 1/4, 0, 1/4, 0], [1/4, 1/4, 0, 0, 0, 1/4, 0, 1/4],

[0, 1/4, 1/4, 0, 0, 1/2, 0, 0], [1/4, 0, 0, 1/4, 1/2, 0, 0, 0],

[0, 1/4, 1/4, 0, 0, 0, 1/2, 0], [1/4, 0, 0, 1/4, 0, 0, 0, 1/2]]

gap> MarkovOperator(L,3,["a","b","c","d"]);

[[0, 0, d, b, 0, c, 0, a], [0, 0, b, d, c, 0, a, 0],

[b, d, 0, 0, a, 0, c, 0], [d, b, 0, 0, 0, a, 0, c],

[0, a, c, 0, 0, b+d, 0, 0], [a, 0, 0, c, b+d, 0, 0, 0],

[0, c, a, 0, 0, 0, b+d, 0], [c, 0, 0, a, 0, 0, 0, b+d]]

In the case of semigroups we have:

gap> S := AutomatonSemigroup("c=(c,d)[1,1],d=(c,c)(1,2)");

< c, d >

gap> MarkovOperator(S,3,["w1","w2"]);

[[w1, 0, 0, 0, w2, 0, 0, 0], [w1, 0, 0, 0, w2, 0, 0, 0],

[0, w1, 0, 0, 0, w2, 0, 0], [w1, 0, 0, 0, w2, 0, 0, 0],

[w2, 0, w1, 0, 0, 0, 0, 0], [w2, 0, w1, 0, 0, 0, 0, 0],

[w1, w2, 0, 0, 0, 0, 0, 0], [w1+w2, 0, 0, 0, 0, 0, 0, 0]]

gap> MarkovOperator(S,3,[1/3,2/3]);

[[1/3, 0, 0, 0, 2/3, 0, 0, 0], [1/3, 0, 0, 0, 2/3, 0, 0, 0],

[0, 1/3, 0, 0, 0, 2/3, 0, 0], [1/3, 0, 0, 0, 2/3, 0, 0, 0],

[2/3, 0, 1/3, 0, 0, 0, 0, 0], [2/3, 0, 1/3, 0, 0, 0, 0, 0],

[1/3, 2/3, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0]]

23 I MihailovaSystem(G) AM

In the case when G is an automaton fractal group acting on a binary tree, computes the generating set for the first
level stabilizer in G such that the sections of these generators at the first level, viewed as elements of Fr × Fr, are in
Mihailova normal form. See [GS14] for details.

gap> G := AutomatonGroup("a=(b,c)(1,2),b=(a,c),c=(a,a)");

< a, b, c >

gap> M := MihailovaSystem(G);

[c^-1*b, c^-1*b^-1*c*a^-1*b*c*b^-1*a, a^-1*b*c*b^-1*a, a*c^-1*b^-1*a*c,

c^-1*a^-1*b*c*a]

gap> for g in M do

> Print(g,"=",Decompose(g),"\n");

> od;

c^-1*b=(1, a^-1*c)

Section 4. Self-similar groups and semigroups defined by the wreath recursion 23

c^-1*b^-1*c*a^-1*b*c*b^-1*a=(1, a^-1*c^-1*a*b^-1*a*b)

a^-1*b*c*b^-1*a=(a, b^-1*a*b)

a*c^-1*b^-1*a*c=(b, c*a^-2*b*a)

c^-1*a^-1*b*c*a=(c, a^-1*b^-1*a^2*b)

24 I AbelImage(obj) A

Returns image of obj in the canonical projection onto the abelianization of the full group of tree automorphisms,
represented as a subgroup of the additive group of rational functions.

25 I DiagonalPower(fam[, k]) O

For a given automaton group G acting on alphabet X and corresponding family fam of automata one can consider the
action of Gk on Xk defined by (x1, x2, . . . , xk)

(g1,g2,...,gk) = (xg1
1 , xg2

2 , . . . , xgk
k). This function constructs a self-similar

group, which encodes this action. If k is not given it is assumed to be 2.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> S := DiagonalPower(UnderlyingAutomFamily(Basilica));

< uu, uv, u1, vu, vv, v1, 1u, 1v >

gap> Decompose(uu);

(vv, v1, 1v, 1)(1,4)(2,3)

26 I MultAutomAlphabet(fam) O

27 I UnderlyingAutomFamily(G) A

Returns the family to which the elements of G belong.

2.4 Self-similar groups and semigroups defined by the wreath recursion
1 I IsFiniteState(G) P

For a group or semigroup of homomorphisms of the tree defined using a wreath recursion, returns true if all genera-
tors can be represented as finite automata (have finitely many different sections). It will never stop if the free reduction
of words is not sufficient to establish the finite-state property or if the group is not finite-state. In case G is a finite-
state group it automatically computes the attributes UnderlyingAutomatonGroup(G) (2.4.4), IsomorphicAutom-
Group(G) (2.4.2) and MonomorphismToAutomatonGroup(G) (2.4.6). For a finite-state semigroup it computes the
corresponding attributes UnderlyingAutomatonSemigroup(G) (2.4.5), IsomorphicAutomSemigroup(G) (2.4.3)
and MonomorphismToAutomatonSemigroup(G) (2.4.7).

gap> W := SelfSimilarGroup("x=(x^-1,y)(1,2), y=(z^-1,1)(1,2), z=(1,x*y)");

< x, y, z >

gap> IsFiniteState(W);

true

gap> Size(GeneratorsOfGroup(UnderlyingAutomatonGroup(W)));

50

2 I IsomorphicAutomGroup(G) AM

In case G is finite-state tries to compute a group generated by automata, isomorphic to G, which is a subgroup of Un-
derlyingAutomatonGroup(G) (see 2.4.4). The natural isomorphism between G and IsomorphicAutomGroup(G)
is stored in the attribute MonomorphismToAutomatonGroup(G) (2.4.6). In some cases it may be useful to check if G
is finite.

24 Chapter 2. Properties and operations with groups and semigroups

gap> R := SelfSimilarGroup("a=(a^-1*b,b^-1*a)(1,2), b=(a^-1,b^-1)");

< a, b >

gap> UR := UnderlyingAutomatonGroup(R);

< a1, a2, a4, a5 >

gap> IR := IsomorphicAutomGroup(R);

< a1, a5 >

gap> hom := MonomorphismToAutomatonGroup(R);

MappingByFunction(< a, b >, < a1, a5 >, function(a) ... end, function(b) \

... end)

gap> (a*b)^hom;

a1*a5

gap> PreImagesRepresentative(hom, last);

a*b

gap> List(GeneratorsOfGroup(UR), x -> PreImagesRepresentative(hom, x));

[a, a^-1*b, b^-1*a, b]

All these operations work also for the subgroups of groups generated by SelfSimilarGroup. (2.1.3).

gap> T := Group([b*a, a*b]);

< b*a, a*b >

gap> IT := IsomorphicAutomGroup(T);

< a1, a4 >

Note, that different groups have different UnderlyingAutomGroup attributes. For example, the generator a1 of group
IT above is different from the generator a1 of group IR.

3 I IsomorphicAutomSemigroup(G) AM

In case G is finite-state returns a semigroup generated by automata, isomorphic to G, which is a subsemigroup of
UnderlyingAutomatonSemigroup(G) (see 2.4.5). The natural isomorphism between G and IsomorphicAutom-

Semigroup(G) is stored in the attribute MonomorphismToAutomatonSemigroup(G) (2.4.7).

gap> R := SelfSimilarSemigroup("a=(1,1)[1,1], b=(a*c,1)(1,2), c=(1,a*b)");

< a, b, c >

gap> UR := UnderlyingAutomatonSemigroup(R);

< 1, a1, a3, a5, a6 >

gap> IR := IsomorphicAutomSemigroup(R);

< a1, a3, a5 >

gap> hom := MonomorphismToAutomatonSemigroup(R);

MappingByFunction(< a, b, c >, < a1, a3, a5 >, function(a) ... end, functio\

n(b) ... end)

gap> (a*b)^hom;

a1*a3

gap> PreImagesRepresentative(hom, last);

a*b

gap> List(GeneratorsOfSemigroup(UR), x -> PreImagesRepresentative(hom, x));

[1, a, b, c, a*b]

All these operations work also for the subsemigroups of semigroups generated by SelfSimilarSemigroup (2.1.4).

gap> T := Semigroup([a*b, b^2]);

< a*b, b^2 >

gap> IT := IsomorphicAutomSemigroup(T);

< a1, a4 >

Section 5. Contracting groups 25

Note, that different semigroups have different UnderlyingAutomSemigroup attributes. For example, the generator
a1 of semigroup IT above is different from the generator a1 of semigroup IR.

4 I UnderlyingAutomatonGroup(G) AM

In case G is finite-state returns a self-similar closure of G as a group generated by automaton. The natural monomor-
phism from G and UnderlyingAutomatonGroup(G) is stored in the attribute MonomorphismToAutomatonGroup(G)
(2.4.6). If G is created by SelfSimilarGroup (see 2.1.3), then the self-similar closure of G coincides with G, so one
can use MonomorphismToAutomatonGroup(G) to get preimages of elements of UnderlyingAutomatonGroup(G)
in G. See the example for IsomorphicAutomGroup (2.4.2).

5 I UnderlyingAutomatonSemigroup(G) AM

In case G is finite-state returns a self-similar closure of G as a semigroup generated by automaton. The natural
monomorphism from G and UnderlyingAutomatonSemigroup(G) is stored in the attribute MonomorphismToAu-

tomatonSemigroup(G) (2.4.7). If G is created by SelfSimilarSemigroup (see 2.1.4), then the self-similar closure
of G coincides with G, so one can use MonomorphismToAutomatonSemigroup(G) to get preimages of elements of
UnderlyingAutomatonSemigroup(G) in G. See the example for IsomorphicAutomSemigroup (2.4.3).

6 I MonomorphismToAutomatonGroup(G) AM

In case G is finite-state returns a monomorphism from G into UnderlyingAutomatonGroup(G) (see 2.4.4). If G is
created by SelfSimilarGroup (see 2.1.3), then one can use MonomorphismToAutomatonGroup(G) to get preim-
ages of elements of UnderlyingAutomatonGroup(G) in G. See the example for IsomorphicAutomGroup (2.4.2).

7 I MonomorphismToAutomatonSemigroup(G) AM

In case G is finite-state returns a monomorphism from G into UnderlyingAutomatonSemigroup(G) (see 2.4.5). If
G is created by SelfSimilarSemigroup (see 2.1.4), then one can use MonomorphismToAutomatonSemigroup(G)
to get preimages of elements of UnderlyingAutomatonSemigroup(G) in G. See the example for IsomorphicAu-
tomSemigroup (2.4.3).

2.5 Contracting groups
1 I GroupNucleus(G) AM

Tries to compute the nucleus (see the definition in 1.1) of a self-similar group G. Note that this set need not contain
the original generators of G. It uses FindNucleus (see 2.3.18) operation and behaves accordingly: if the group is not
contracting it will loop forever. See also GeneratingSetWithNucleus (2.5.2).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> GroupNucleus(Basilica);

[1, u, v, u^-1, v^-1, u^-1*v, v^-1*u]

2 I GeneratingSetWithNucleus(G) AM

Tries to compute the generating set of a self-similar group G that includes the original generators and the nucleus (see
1.1) of G. It uses FindNucleus operation and behaves accordingly: if the group is not contracting it will loop forever
(modulo memory constraints, of course). See also GroupNucleus (2.5.1).

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> GeneratingSetWithNucleus(Basilica);

[1, u, v, u^-1, v^-1, u^-1*v, v^-1*u]

3 I GeneratingSetWithNucleusAutom(G) AM

Computes the automaton of the generating set that includes the nucleus of a contracting group G. See also Generat-

ingSetWithNucleus (2.5.2).

26 Chapter 2. Properties and operations with groups and semigroups

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> B_autom := GeneratingSetWithNucleusAutom(Basilica);

<automaton>

gap> Display(B_autom);

a1 = (a1, a1), a2 = (a3, a1)(1,2), a3 = (a2, a1), a4 = (a1, a5)

(1,2), a5 = (a4, a1), a6 = (a1, a7)(1,2), a7 = (a6, a1)(1,2)

4 I ContractingLevel(G) AM

Given a contracting group G with generating set N that includes the nucleus, stored in GeneratingSetWithNu-

cleus(G) (see 2.5.2) computes the minimal level n, such that for every vertex v of the n-th level and all g, h ∈ N the
section gh|v ∈ N.

In the case if it is not known whether G is contracting, it first tries to compute the nucleus. If G happens to be
noncontracting, it will loop forever. One can also use IsNoncontracting (see 2.2.10) or FindNucleus (see 2.3.18)
directly.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> ContractingLevel(Grigorchuk_Group);

1

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> ContractingLevel(Basilica);

2

5 I ContractingTable(G) AM

Given a contracting group G with a generating set N of size k that includes the nucleus, stored in GeneratingSetWith-
Nucleus(G) (see 2.5.2) computes the k × k table, whose [i][j]-th entry contains decomposition of N[i]N[j] on the
ContractingLevel(G) level (see 2.5.4). By construction the sections of N[i]N[j] on this level belong to N. This
table is used in the algorithm solving the word problem in polynomial time.

In the case if it is not known whether G is contracting it first tries to compute the nucleus. If G happens to be
noncontracting, it will loop forever. One can also use IsNoncontracting (see 2.2.10) or FindNucleus (see 2.3.18)
directly.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> ContractingTable(Grigorchuk_Group);

[[(1, 1), (1, 1)(1,2), (a, c), (a, d), (1, b)],

[(1, 1)(1,2), (1, 1), (c, a)(1,2), (d, a)(1,2), (b, 1)(1,2)],

[(a, c), (a, c)(1,2), (1, 1), (1, b), (a, d)],

[(a, d), (a, d)(1,2), (1, b), (1, 1), (a, c)],

[(1, b), (1, b)(1,2), (a, d), (a, c), (1, 1)]]

6 I UseContraction(G) O
I DoNotUseContraction(G) O

For a contracting automaton group G these two operations determine whether to use the algorithm of polynomial
complexity solving the word problem in the group. By default it is set to true as soon as the nucleus of the group
was computed. Sometimes when the nucleus is very big, the standard algorithm of exponential complexity is faster
for short words, but this heavily depends on the group. Therefore the decision on which algorithm to use is left to the
user. To use the exponential algorithm one can use the second operation DoNotUseContraction(G).

Section 6. Rewriting Systems 27

Note also then in order to use the polynomial time algorithm the ContractingTable(G) (see 2.5.5) has to be com-
puted first, which takes some time when the nucleus is big. This attribute is computed automatically when the word
problem is solved for the first time. This sometimes causes some delay.

Below we provide an example which shows that both methods can be of use.

gap> G := AutomatonGroup("a=(b,b)(1,2), b=(c,a), c=(a,a)");

< a, b, c >

gap> IsContracting(G);

true

gap> Size(GroupNucleus(G));

41

gap> ContractingLevel(G);

6

gap> ContractingTable(G);; time;

4719

gap> v := a*b*a*b^2*c*b*c*b^-1*a^-1*b^-1*a^-1;;

gap> w := b*c*a*b*a*b*c^-1*b^-2*a^-1*b^-1*a^-1;;

gap> UseContraction(G);;

gap> IsOne(Comm(v,w)); time;

true

110

gap> FindGroupRelations(G, 9);; time;

a^2

b^2

c^2

(b*a*b*c*a)^2

(b*(c*a)^2)^2

(b*c*b*a*(b*c)^2*a)^2

(b*(c*b*c*a)^2)^2

11578

gap> DoNotUseContraction(G);;

gap> IsOne(Comm(v,w)); time;

true

922

gap> FindGroupRelations(G, 9);; time;

a^2

b^2

c^2

(b*a*b*c*a)^2

(b*(c*a)^2)^2

(b*c*b*a*(b*c)^2*a)^2

(b*(c*b*c*a)^2)^2

23719

2.6 Rewriting Systems

It is possible to use basic relators in all computations performed in a self-similar group.

1 I AG UseRewritingSystem(G[, setting]) O

Tells whether computations in the group G should use a rewriting system. setting defaults to true if omitted. This
function initially only tries to find involutions in G. See AG AddRelators (2.6.2) and AG UpdateRewritingSystem

(2.6.3) for the ways to add more relators.

28 Chapter 2. Properties and operations with groups and semigroups

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> Comm(a*b, b*a);

b^-1*a^-2*b^-1*a*b^2*a

gap> AG_UseRewritingSystem(G);

gap> Comm(a*b, b*a);

1

gap> AG_UseRewritingSystem(G, false);

gap> Comm(a*b, b*a);

b^-1*a^-2*b^-1*a*b^2*a

2 I AG AddRelators(G, relators) O

Adds relators from the list relators to the rewriting system used in G.

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(G);

gap> b*c;

b*c

gap> AG_AddRelators(G, [b*c*d]);

gap> b*c;

d

In some cases it’s hard to find relations directly from the wreath recursion of a self-similar group (at least, there is no
general agorithm). This function provides possibility to add relators manually. After that one can use AG UpdateRewritingSystem

(see 2.6.3) and AG UseRewritingSystem (see 2.6.1) to use these relators in computations. In the example below we
consider a finite group H, in which a = b, but the standard algorithm is unable to solve the word problem. There
are two solutions for that. One can manually add a relator, or one can ask if the group is finite (which does not stop
generally if the group is infinite).

gap> H := SelfSimilarGroup("a=(a*b,1)(1,2), b=(1,b*a^-1)(1,2), c=(b, a*b)");

< a, b, c >

gap> AG_AddRelators(H, [a*b^-1]);

gap> AG_UseRewritingSystem(H);

gap> Order(a*c);

4

3 I AG UpdateRewritingSystem(G, maxlen) O

Tries to find new relators of length up to maxlen and adds them into the rewriting system. It can also be used after
introducing new relators via AG AddRelators (see 2.6.2).

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(G);

gap> b*c;

b*c

gap> AG_UpdateRewritingSystem(G, 3);

gap> b*c;

d

4 I AG RewritingSystemRules(G) O

Returns the list of rules used in the rewriting system of group G.

Section 6. Rewriting Systems 29

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(G);

gap> AG_RewritingSystemRules(G);

[[a^2, <identity ...>], [b^2, <identity ...>], [c^2, <identity ...>],

[d^2, <identity ...>], [A, a], [B, b], [C, c], [D, d]]

3
Properties and

operations
with group and

semigroup elements

In this chapter we present the functionality applicable to elements of groups and semigroups.

3.1 Creation of tree automorphisms and homomorphisms
1 I TreeAutomorphism(states, perm) O

Constructs the tree automorphism with states on the first level given by the argument states and acting on the first
level as the permutation perm. The states must belong to the same family.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> r := TreeAutomorphism([p, q, p, q^2],(1,2)(3,4));

(p, q, p, q^2)(1,2)(3,4)

gap> t := TreeAutomorphism([q, 1, p*q, q],(1,2));

(q, 1, p*q, q)(1,2)

gap> r*t;

(p, q^2, p*q, q^2*p*q)(3,4)

2 I TreeHomomorphism(states, tr) O

Constructs an homomorphism with states states and acting on the first level with transformation tr. The states must
belong to the same family.

gap> S := AutomatonSemigroup("a=(a,b)[1,1],b=(b,a)(1,2)");

< a, b >

gap> x := TreeHomomorphism([a,b^2,a,a*b],Transformation([3,1,2,2]));

(a, b^2, a, a*b)[3,1,2,2]

gap> y := TreeHomomorphism([a*b,b,b,b^2],Transformation([1,4,2,3]));

(a*b, b, b, b^2)[1,4,2,3]

gap> x*y;

(a*b, b^2*a*b, a*b, a*b^2)[2,1,4,4]

3 I Representative(word, fam) O
I Representative(word, a) O

Given an associative word word constructs the tree homomorphism from the family fam, or to which homomorphism
a belongs. This function is useful when one needs to make some operations with associative words. See also Word

(3.2.12).

Section 2. Properties and attributes of tree automorphisms and homomorphisms 31

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> F := UnderlyingFreeGroup(L);

<free group on the generators [p, q]>

gap> r := Representative(F.1*F.2^2, p);

p*q^2

gap> Decompose(r);

(p*q^2, q*p^2)(1,2)

gap> H := SelfSimilarGroup("x=(x*y,x)(1,2), y=(x^-1,y)");

< x, y >

gap> F := UnderlyingFreeGroup(H);

<free group on the generators [x, y]>

gap> r := Representative(F.1^-1*F.2, x);

x^-1*y

gap> Decompose(r);

(x^-1*y, y^-1*x^-2)(1,2)

3.2 Properties and attributes of tree automorphisms and homomorphisms
1 I IsSphericallyTransitive(a) P

Returns whether the action of a is spherically transitive (see 1.1).

2 I IsTransitiveOnLevel(a, lev) O

Returns whether a acts transitively on level lev of the tree.

3 I IsOne(a) O

Returns whether an automorphism a acts trivially on the tree. For contracting groups see also UseContraction

(2.5.6) and IsOneContr (3.2.4).

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> IsOne(q*p^-1*q*p^-1);

true

4 I IsOneContr(a) F

Returns true if a is trivial automorphism and false otherwise. Works for contracting groups only. Uses polynomial
time algorithm.

5 I Order(a) O

Computes the order of an automorphism a. In some cases it does not stop. Works always (modulo memory restrictions)
for groups generated by bounded automata.

If InfoLevel of InfoAutomGrp is greater than or equal to 3 (one can set it by SetInfoLevel(InfoAutomGrp,

3)) and the element has infinite order, then the proof of this fact is printed.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> Order(p*q^-1);

2

gap> SetInfoLevel(InfoAutomGrp, 3);

gap> Order(u^35*v^-12*u^2*v^-3);

32 Chapter 3. Properties and operations with group and semigroup elements

#I (u^35*v^-12*u^2*v^-3)^68719476736 has conjugate of u^2*v^-3*u^35*v^

-12 as a section at vertex [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

infinity

6 I OrderUsingSections(a[, max depth]) O

Tries to compute the order of the element a by looking at its sections of depth up to max depth-th level. If max depth
is omitted it is assumed to be infinity, but then it may not stop. Also note, that if max depth is not given, it searches
the tree in depth first and may be trapped in some infinite ray, while specifying finite max depth may produce a result
by looking at a section not in that ray. For bounded automata it will always produce a result.

If InfoLevel of InfoAutomGrp is greater than or equal to 3 (one can set it by SetInfoLevel(InfoAutomGrp,

3)) and the element has infinite order, then the proof of this fact is printed.

gap> Grigorchuk_Group := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> OrderUsingSections(a*b*a*c*b);

16

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> SetInfoLevel(InfoAutomGrp, 3);

gap> OrderUsingSections(u^23*v^-2*u^3*v^15, 10);

#I v^13*u^15 acts transitively on levels and is obtained from (u^23*v^-2*u^3*v^15)^1

by taking sections and cyclic reductions at vertex [1]

infinity

gap> G := AutomatonGroup("a=(c,a)(1,2), b=(b,c), c=(b,a)");

< a, b, c >

gap> OrderUsingSections(b,10);

#I b*c*a^2*b^2*c*a acts transitively on levels and is obtained from (b)^8

by taking sections and cyclic reductions at vertex

[2, 2, 1, 1, 1, 1, 2, 2, 1, 1]

infinity

7 I Perm(a[, lev]) O

Returns the permutation induced by the tree automorphism a on the level lev (or first level if lev is not given). See also
TransformationOnLevel (3.2.10).

8 I PermOnLevel(a, k) O

Does the same thing as Perm (3.2.7).

9 I PermOnLevelAsMatrix(g, lev) F

Computes the action of the element g of a group on the lev-th level as a permutational matrix, in which the i-th row
contains 1 at the position iˆg.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> PermOnLevel(p*q,2);

(1,4)(2,3)

gap> PermOnLevelAsMatrix(p*q, 2);

[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]

Section 3. Operations with tree automorphisms and homomorphisms 33

10 I TransformationOnLevel(a, lev) O
I TransformationOnFirstLevel(a) O

The first function returns the transformation induced by the tree homomorphism a on the level lev. See also PermOn-

Level (3.2.8).

If the transformation is invertible then it returns a permutation, and Transformation otherwise.

TransformationOnFirstLevel(a) is equivalent to TransformationOnLevel(a, 1).

11 I TransformationOnLevelAsMatrix(g, lev) F

Computes the action of the element g on the lev-th level as a permutational matrix, in which the i-th row contains 1 at
the position iˆg.

gap> L := AutomatonSemigroup("p=(p,q)(1,2), q=(p,q)[1,1]");

< p, q >

gap> TransformationOnLevel(p*q,2);

Transformation([1, 1, 2, 2])

gap> TransformationOnLevelAsMatrix(p*q,2);

[[1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]

12 I Word(a) O

Returns a as an associative word (an element of the underlying free group) in the generators of the self-similar group
(semigroup) to which a belongs.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> w := Word(p*q^2*p^-1);

p*q^2*p^-1

gap> Length(w);

4

3.3 Operations with tree automorphisms and homomorphisms

The multiplication of tree homomorphisms is defined in the standard way

1 I a * b

The following operations allow computation of the actions of tree homomorphisms on letters and vertices

2 I letter ^ a
I vertex ^ a

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> 1^p;

2

gap> [1, 2, 2, 1, 2, 1]^(p*q^2);

[2, 1, 2, 2, 1, 2]

The operations below describe how to work with sections of tree homomorphisms.

3 I Section(a, v) O

Returns the section of the automorphism (homomorphism) a at the vertex v. The vertex v can be a list representing the
vertex, or a positive integer representing a vertex of the first level of the tree.

34 Chapter 3. Properties and operations with group and semigroup elements

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Section(p*q*p^2, [1,2,2,1,2,1]);

p^2*q^2

4 I Sections(a [, lev]) O

Returns the list of sections of a at the lev-th level. If lev is omitted it is assumed to be 1.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Sections(p*q*p^2);

[p*q^2*p, q*p^2*q]

5 I Decompose(a[, k]) O

Returns the decomposition of the tree homomorphism a on the k-th level of the tree, i.e. the representation of the form

a = (a1, a2, . . . , ad1×···×dk)σ

where ai are the sections of a at the k-th level, and σ is the transformation of the k-th level. If k is omitted it is assumed
to be 1.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Decompose(p*q^2);

(p*q^2, q*p^2)(1,2)

gap> Decompose(p*q^2,3);

(p*q^2, q*p^2, p^2*q, q^2*p, p*q*p, q*p*q, p^3, q^3)(1,8,3,5)(2,7,4,6)

6 I a in G

Returns whether the automorphism a belongs to the group G. In some cases it does not stop.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> H := Group([p^2, q^2]);

< p^2, q^2 >

gap> p in H;

false

7 I OrbitOfVertex(ver, g[, n]) O

Returns the list of vertices in the orbit of the vertex ver under the action of the semigroup generated by the automor-
phism g. If n is specified, it returns only the first n elements of the orbit. Vertices are defined either as lists with entries
from {1, . . . , d}, or as strings containing characters 1, . . . , d, where d is the degree of the tree.

gap> T := AutomatonGroup("t=(1,t)(1,2)");

< t >

gap> OrbitOfVertex([1,1,1], t);

[[1, 1, 1], [2, 1, 1], [1, 2, 1], [2, 2, 1], [1, 1, 2],

[2, 1, 2], [1, 2, 2], [2, 2, 2]]

gap> OrbitOfVertex("11111111111", t, 6);

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1], [2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1]]

Section 4. Elements of groups and semigroups defined by wreath recursion 35

8 I PrintOrbitOfVertex(ver, g[, n]) O

Prints the orbit of the vertex ver under the action of the semigroup generated by g. Each vertex is printed as a string
containing characters 1, . . . , d, where d is the degree of the tree. In case of binary tree the symbols “ ” and “x” are
used to represent 1 and 2. If n is specified only the first n elements of the orbit are printed. Vertices are defined either
as lists with entries from {1, . . . , d}, or as strings. See also OrbitOfVertex (3.3.7).

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> PrintOrbitOfVertex("2222222222222222222222222222222", p*q^-2, 6);

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x x x x x x x x x x x x x x x

x xx xx xx xx xx xx xx

x x x x x x x

xxx xxxx xxxx xxxx

x x x x x x x

gap> H := AutomatonGroup("t=(s,1,1)(1,2,3), s=(t,s,t)(1,2)");

< t, s >

gap> PrintOrbitOfVertex([1,2,1], s^2);

121

132

123

131

122

133

9 I PermActionOnLevel(perm, big lev, sm lev, deg) F

Given a permutation perm on the big lev-th level of the tree of degree deg returns the permutation induced by perm
on a smaller level sm lev.

gap> PermActionOnLevel((1,4,2,3), 2, 1, 2);

(1,2)

gap> PermActionOnLevel((1,13,5,9,3,15,7,11)(2,14,6,10,4,16,8,12), 4, 2, 2);

(1,4,2,3)

3.4 Elements of groups and semigroups defined by wreath recursion
1 I IsFiniteState(a) P

Returns true if a has finitely many different sections. It will never stop if the free reduction of words is not sufficient
to establish the finite-state property or if a is not finite-state (has infinitely many different sections).

See also AllSections (3.4.2) for the list of all sections and MealyAutomaton (4.1.1), which allows to construct a
Mealy automaton whose states are the sections of a and which encodes its action on the tree.

gap> D := SelfSimilarGroup("x=(1,y)(1,2), y=(z^-1,1)(1,2), z=(1,x*y)");

< x, y, z >

gap> IsFiniteState(x*y^-1);

true

2 I AllSections(a) A

Returns the list of all sections of a if there are finitely many of them and this fact can be established using free
reduction of words in sections. Otherwise will never stop. Note, that in the case when a is an element of a self-
similar (semi)group defined by wreath recurion it does not check whether all elements of the list are actually different

36 Chapter 3. Properties and operations with group and semigroup elements

automorphisms (homomorphisms) of the tree. If a is a element of of a (semi)group generated by finite automaton, it
will always return the list of all distinct sections of a.

gap> D := SelfSimilarGroup("x=(1,y)(1,2), y=(z^-1,1)(1,2), z=(1,x*y)");

< x, y, z >

gap> AllSections(x*y^-1);

[x*y^-1, z, 1, x*y, y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1, z*y^-1*x*y*z,

y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, x*y*z, y, z^-1, y^-1*x^-1, z*y^-1]

See also operation MealyAutomaton (4.1.1), which allows to construct a Mealy automaton whose states are the
sections of given tree homomorphism and which encodes its action on the tree.

3.5 Elements of contracting groups
1 I AutomPortrait(a) F
I AutomPortraitBoundary(a) F
I AutomPortraitDepth(a) F

Constructs the portrait of an element a of a contracting group G. The portrait of a is defined recursively as follows.
For g in the nucleus of G the portrait is just [g]. For any other element g = (g1, g2, . . . , gd)σ the portrait of g
is [σ , AutomPortrait(g1), . . . , AutomPortrait(gd)], where d is the degree of the tree. This structure describes a
finite tree whose inner vertices are labelled by permutations from Sd and the leaves are labelled by elements from the
nucleus. The contraction in G guarantees that the portrait of any element is finite.

The portraits may be considered as “normal forms” of the elements of G, since different elements have different
portraits.

One also can be interested only in the boundary of a portrait, which consists of all leaves of the portrait. This boundary
can be described by an ordered set of pairs [leveli, gi], i = 1, . . . , r representing the leaves of the tree ordered from left
to right (where leveli and gi are the level and the label of the i-th leaf correspondingly, r is the number of leaves). The
operation AutomPortraitBoundary(a) computes this boundary.

AutomPortraitDepth(a) returns the depth of the portrait, i.e. the minimal level such that all sections of a at this
level belong to the nucleus of G.

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> AutomPortrait(u^3*v^-2*u);

[(), [(), [(), [v], [v]], [1]],

[(), [(), [v], [u^-1*v]], [v^-1]]]

gap> AutomPortrait(u^3*v^-2*u^3);

[(), [(), [(1,2), [(), [(), [v], [v]], [1]], [v]], [1]],

[(), [(1,2), [(), [(), [v], [v]], [1]], [u^-1*v]], [v^-1]

]]

gap> AutomPortraitBoundary(u^3*v^-2*u^3);

[[5, v], [5, v], [4, 1], [3, v], [2, 1], [5, v], [5, v],

[4, 1], [3, u^-1*v], [2, v^-1]]

gap> AutomPortraitDepth(u^3*v^-2*u^3);

5

4 Noninitial automata
In this chapter we present the functionality applicable to noninitial automata.

4.1 Definition
1 I MealyAutomaton(table[, names[, alphabet]]) O
I MealyAutomaton(string) O
I MealyAutomaton(autom) O
I MealyAutomaton(tree hom list) O
I MealyAutomaton(list, name func) O
I MealyAutomaton(list, true) O

Creates the Mealy automaton (see 1.1) defined by the argument table, string or autom. Format of the argument table
is the following: it is a list of states, where each state is a list of positive integers which represent transition function
at the given state and a permutation or transformation which represent the output function at this state. Format of
the string string is the same as in AutomatonGroup (see 2.1.1). The third form of this operation takes a tree homo-
morphism autom as its argument. It returns noninitial automaton constructed from the sections of autom, whose first
state corresponds to autom itself. The fourth form creates a noninitial automaton constructed of the states of all tree
homomorphisms from the tree hom list.

gap> A := MealyAutomaton([[1,2,(1,2)],[3,1,()],[3,3,(1,2)]], ["a","b","c"]);

<automaton>

gap> Display(A);

a = (a, b)(1,2), b = (c, a), c = (c, c)(1,2)

gap> B:=MealyAutomaton([[1,2,Transformation([1,1])],[3,1,()],[3,3,(1,2)]],["a","b","c"]);

<automaton>

gap> Display(B);

a = (a, b)[1, 1], b = (c, a), c = (c, c)[2, 1]

gap> D := MealyAutomaton("a=(a,b)(1,2), b=(b,a)");

<automaton>

gap> Display(D);

a = (a, b)(1,2), b = (b, a)

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> M := MealyAutomaton(u*v*u^-3);

<automaton>

gap> Display(M);

a1 = (a2, a5), a2 = (a3, a4), a3 = (a4, a2)(1,2), a4 = (a4, a4), a5 = (a6, a3)

(1,2), a6 = (a7, a4), a7 = (a6, a4)(1,2)

If list consists of tree homomorphisms, it creates a noninitial automaton constructed of their states. If name func is
a function then it is used to name the states of the newly constructed automaton. If it is true then states of automata
from the list are used. If it false then new states are named a 1, a 2, etc.

38 Chapter 4. Noninitial automata

gap> G := AutomatonGroup("a=(b,a),b=(b,a)(1,2)");

< a, b >

gap> MealyAutomaton([a*b]);; Display(last);

a1 = (a2, a4)(1,2), a2 = (a3, a1), a3 = (a3, a1)(1,2), a4 = (a2, a4)

gap> MealyAutomaton([a*b], true);; Display(last);

<a*b> = (<b^2>, <a^2>)(1,2), <b^2> = (<b*a>, <a*b>), <b*a> = (<b*a>, <a*b>)(1,2), <a^2> = (<b^2>, <a^2>)

gap> MealyAutomaton([a*b], String);; Display(last);

a*b = (b^2, a^2)(1,2), b^2 = (b*a, a*b), b*a = (b*a, a*b)(1,2), a^2 = (b^2, a^2)

2 I IsMealyAutomaton(A) C

A category of non-initial finite Mealy automata with the same input and output alphabet.

3 I NumberOfStates(A) A

Returns the number of states of the automaton A.

4 I SizeOfAlphabet(A) A

Returns the number of letters in the alphabet the automaton A acts on.

5 I AutomatonList(A) A

Returns the list of A acceptable by MealyAutomaton (see 4.1.1)

4.2 Tools
1 I IsTrivial(A) P

Computes whether the automaton A is equivalent to the trivial automaton.

gap> A := MealyAutomaton("a=(c,c), b=(a,b), c=(b,a)");

<automaton>

gap> IsTrivial(A);

true

2 I IsInvertible(A) P

Is true if A is invertible and false otherwise.

3 I MinimizationOfAutomaton(A) F

Returns the automaton obtained from automaton A by minimization. The implementation of this function was signifi-
cantly optimized by Andrey Russev starting from Version 1.3.

gap> B := MealyAutomaton("a=(1,a)(1,2), b=(1,a)(1,2), c=(a,b), d=(a,b)");

<automaton>

gap> C := MinimizationOfAutomaton(B);

<automaton>

gap> Display(C);

a = (1, a)(1,2), c = (a, a), 1 = (1, 1)

4 I MinimizationOfAutomatonTrack(A) F

Returns the list [A new, new via old, old via new], where A new is an automaton obtained from automaton A
by minimization, new via old describes how new states are expressed in terms of the old ones, and old via new

describes how old states are expressed in terms of the new ones. The implementation of this function was significantly
optimized by Andrey Russev starting from Version 1.3.

Section 2. Tools 39

gap> B := MealyAutomaton("a=(1,a)(1,2), b=(1,a)(1,2), c=(a,b), d=(a,b)");

<automaton>

gap> B_min := MinimizationOfAutomatonTrack(B);

[<automaton>, [1, 3, 5], [1, 1, 2, 2, 3]]

gap> Display(B_min[1]);

a = (1, a)(1,2), c = (a, a), 1 = (1, 1)

5 I IsOfPolynomialGrowth(A) P

Determines whether the automaton A has polynomial growth in terms of Sidki [Sid00].

See also IsBounded (4.2.6) and PolynomialDegreeOfGrowth (4.2.7).

gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> IsOfPolynomialGrowth(B);

true

gap> D := MealyAutomaton("a=(a,b)(1,2), b=(b,a)");

<automaton>

gap> IsOfPolynomialGrowth(D);

false

6 I IsBounded(A) P

Determines whether the automaton A is bounded in terms of Sidki [Sid00].

See also IsOfPolynomialGrowth (4.2.5) and PolynomialDegreeOfGrowth (4.2.7).

gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> IsBounded(B);

true

gap> C := MealyAutomaton("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

<automaton>

gap> IsBounded(C);

false

7 I PolynomialDegreeOfGrowth(A) A

For an automaton A of polynomial growth in terms of Sidki [Sid00] determines its degree of polynomial growth. This
degree is 0 if and only if automaton is bounded. If the growth of automaton is exponential returns fail.

See also IsOfPolynomialGrowth (4.2.5) and IsBounded (4.2.6).

gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> PolynomialDegreeOfGrowth(B);

0

gap> C := MealyAutomaton("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

<automaton>

gap> PolynomialDegreeOfGrowth(C);

2

8 I AdjacencyMatrix(A) A

Returns the adjacency matrix of a Mealy automaton A, in which the ij-th entry contains the number of arrows in the
Moore diagram of A from state i to state j.

40 Chapter 4. Noninitial automata

gap> A:=MealyAutomaton("a=(a,a,b)(1,2,3),b=(a,c,b)(1,2),c=(a,a,a)");

<automaton>

gap> AdjacencyMatrix(A);

[[2, 1, 0], [1, 1, 1], [3, 0, 0]]

9 I IsAcyclic(A) P

Computes whether or not an automaton A is acyclic in the sense of Sidki [Sid00]. I.e. returns true if the Moore
diagram of A does not contain cycles with two or more states and false otherwise.

gap> A := MealyAutomaton("a=(a,a,b)(1,2,3),b=(c,c,b)(1,2),c=(d,c,1),d=(d,1,d)");

<automaton>

gap> IsAcyclic(A);

true

gap> A := MealyAutomaton("a=(a,a,b)(1,2,3),b=(c,c,d)(1,2),c=(d,c,1),d=(b,1,d)");

<automaton>

gap> IsAcyclic(A);

false

10 I DualAutomaton(A) O

Returns the automaton dual of A.

gap> A := MealyAutomaton("a=(b,a)(1,2), b=(b,a)");

<automaton>

gap> D := DualAutomaton(A);

<automaton>

gap> Display(D);

d1 = (d2, d1)[2, 2], d2 = (d1, d2)[1, 1]

11 I InverseAutomaton(A) O

Returns the automaton inverse to A if A is invertible.

gap> A := MealyAutomaton("a=(b,a)(1,2), b=(b,a)");

<automaton>

gap> B := InverseAutomaton(A);

<automaton>

gap> Display(B);

a1 = (a1, a2)(1,2), a2 = (a2, a1)

12 I IsBireversible(A) P

Computes whether or not the automaton A is bireversible, i.e. A, the dual of A and the dual of the inverse of A are
invertible. The example below shows that the Bellaterra automaton is bireversible.

gap> Bellaterra := MealyAutomaton("a=(c,c)(1,2), b=(a,b), c=(b,a)");

<automaton>

gap> IsBireversible(Bellaterra);

true

13 I IsReversible(A) P

Computes whether or not the automaton A is reversible, i.e. the dual of A is invertible.

14 I IsIRAutomaton(A) P

Computes whether or not the automaton A is an IR-automaton, i.e. A and its dual are invertible. The example below
shows that the automaton generating lamplighter group is an IR-automaton.

Section 2. Tools 41

gap> L := MealyAutomaton("a=(b,a)(1,2), b=(a,b)");

<automaton>

gap> IsIRAutomaton(L);

true

The next three commands deal with the, so-called, MD-reduction procedure developed in [AKL+12]. Particularly,
according to [Kli13], a 2-letter or 2-state invertible reversible automaton generates a finite group if and only if the
MD-reduction procedure terminates with the trivial automaton. In this case an automaton is called MD-trivial.

15 I MDReduction(A) O

Performs the process of MD-reduction of automaton A (alternating applications of minimization and dualization
procedures) until a pair of minimal automata dual to each other is reached. Returns this pair. The main point of this
procedure is in the fact that the (semi)group generated by the original automaton is finite if and only each of the
(semi)groups generated by the output automata is finite.

gap> A:=MealyAutomaton("a=(d,d,d,d)(1,2)(3,4),b=(b,b,b,b)(1,4)(2,3),\\

> c=(a,c,a,c), d=(c,a,c,a)");

<automaton>

gap> NumberOfStates(MinimizationOfAutomaton(A));

4

gap> MDR:=MDReduction(A);

[<automaton>, <automaton>]

gap> Display(MDR[1]);

d1 = (d2, d2, d1, d1)(1,4,3), d2 = (d1, d1, d2, d2)(1,4)

gap> Display(MDR[2]);

d1 = (d4, d4)(1,2), d2 = (d2, d2)(1,2), d3 = (d1, d3), d4 = (d3, d1)

16 I IsMDTrivial(A) P

Returns true if A is MD-trivial (i.e. if MD-reduction proedure returns the trivial automaton) and false otherwise.

17 I IsMDReduced(A) P

Returns true if A is MD-reduced and false otherwise.

18 I DisjointUnion(A, B) O

Constructs the disjoint union of automata A and B

gap> A := MealyAutomaton("a=(a,b)(1,2), b=(a,b)");

<automaton>

gap> B := MealyAutomaton("c=(d,c), d=(c,e)(1,2), e=(e,d)");

<automaton>

gap> Display(DisjointUnion(A, B));

a1 = (a1, a2)(1,2), a2 = (a1, a2), a3 = (a4, a3), a4 = (a3, a5)

(1,2), a5 = (a5, a4)

19 I A * B

Constructs the product of 2 noninitial automata A and B.

gap> A := MealyAutomaton("a=(a,b)(1,2), b=(a,b)");

<automaton>

gap> B := MealyAutomaton("c=(d,c), d=(c,e)(1,2), e=(e,d)");

<automaton>

gap> Print(A*B);

a1 = (a1, a5)(1,2), a2 = (a3, a4), a3 = (a2, a6)

(1,2), a4 = (a2, a4), a5 = (a1, a6)(1,2), a6 = (a3, a5)

42 Chapter 4. Noninitial automata

20 I SubautomatonWithStates(A, states) O

Returns the minimal subautomaton of the automaton A containing states states.

gap> A := MealyAutomaton("a=(e,d)(1,2),b=(c,c),c=(b,c)(1,2),d=(a,e)(1,2),e=(e,d)");

<automaton>

gap> Display(SubautomatonWithStates(A, [1, 4]));

a = (e, d)(1,2), d = (a, e)(1,2), e = (e, d)

21 I AutomatonNucleus(A) O

Returns the nucleus of the automaton A, i.e. the minimal subautomaton containing all cycles in A.

gap> A := MealyAutomaton("a=(b,c)(1,2),b=(d,d),c=(d,b)(1,2),d=(d,b)(1,2),e=(a,d)");

<automaton>

gap> Display(AutomatonNucleus(A));

b = (d, d), d = (d, b)(1,2)

22 I AreEquivalentAutomata(A, B) O

Returns true if for every state s of the automaton A there is a state of the automaton B equivalent to s and vice versa.

gap> A := MealyAutomaton("a=(b,a)(1,2), b=(a,c), c=(b,c)(1,2)");

<automaton>

gap> B := MealyAutomaton("b=(a,c), c=(b,c)(1,2), a=(b,a)(1,2), d=(b,c)(1,2)");

<automaton>

gap> AreEquivalentAutomata(A, B);

true

5 Miscellaneous
In this chapter we present the functionality that does not quite fit in other chapters and the list of predefined groups
and semigroups.

5.1 Converters to and from FR package
1 I FR2AutomGrp(G) O

This operation is designed to convert data structures defined in FR package written by Laurent Bartholdi to corre-
sponding structures in AutomGrp package. Currently it is implemented for functionally recursive groups, semigroups,
and their sub(semi)groups and elements.

gap> ZZ := FRGroup("t=<,t>[2,1]");

<state-closed group over [1 .. 2] with 1 generator>

gap> AZZ := FR2AutomGrp(ZZ);

< t >

gap> Display(AZZ);

< t = (1, t)(1,2) >

gap> i4 := FRMonoid("s=(1,2)","f=<s,f>[1,1]");

<state-closed monoid over [1 .. 2] with 2 generators>

gap> Ai4 := FR2AutomGrp(i4);

< 1, s, f >

gap> Display(Ai4);

< 1 = (1, 1),

s = (1, 1)(1,2),

f = (s, f)[1,1] >

gap> S := FRGroup("a=<a*b^-2,b^3>(1,2)","b=<b^-1*a,1>");

<state-closed group over [1 .. 2] with 2 generators>

gap> AS := FR2AutomGrp(S);

< a, b >

gap> Display(AS);

< a = (a*b^-2, b^3)(1,2),

b = (b^-1*a, 1) >

gap> AssignGeneratorVariables(S);

#I Assigned the global variables ["a", "b"]

gap> x := a^3*b*a^-2;

<2|a^3*b*a^-2>

gap> DecompositionOfFRElement(x);

[[<2|a*b^-2>, <2|b^3*a^2*b^-1*a^-1>], [2, 1]]

gap> y := FR2AutomGrp(x);

a^3*b*a^-2

gap> Decompose(y);

(a*b^-2, b^3*a^2*b^-1*a^-1)(1,2)

44 Chapter 5. Miscellaneous

2 I AutomGrp2FR(G) O

This operation is designed to convert data structures defined in AutomGrp to corresponding structures in AutomGrp
package written by Laurent Bartholdi. Currently it is implemented for automaton and self-similari (or, functionally
recursive in L.Bartholdi’s terminology) groups, semigroups, their sub(semi)groups and elements.

gap> G:=AutomatonGroup("a=(b,a)(1,2),b=(a,b)");

< a, b >

gap> FG := AutomGrp2FR(G);

<state-closed group over [1 .. 2] with 2 generators>

gap> DecompositionOfFRElement(FG.1);

[[<2|b>, <2|a>], [2, 1]]

gap> DecompositionOfFRElement(FG.2);

[[<2|a>, <2|b>], [1, 2]]

gap> G := SelfSimilarGroup("a=(a*b^-2,b)(1,2),b=(b^2,a*b*a^-2)");

< a, b >

gap> F := AutomGrp2FR(G);

<state-closed group over [1 .. 2] with 2 generators>

gap> DecompositionOfFRElement(F.1);

[[<2|a*b^-2>, <2|b>], [2, 1]]

gap> G := AutomatonGroup("a=(b,a)(1,2),b=(a,b),c=(c,a)(1,2)");

< a, b, c >

gap> H := Group([a*b,b*c^-2,a]);

< a*b, b*c^-2, a >

gap> FH := AutomGrp2FR(H);

<recursive group over [1 .. 2] with 3 generators>

gap> DecompositionOfFRElement(FH.1);

[[<2|b^2>, <2|a^2>], [2, 1]]

gap> G := SelfSimilarSemigroup("a=(a*b^2,b*a)[1,1],b=(b,a*b*a)(1,2)");

< a, b >

gap> S := AutomGrp2FR(G);

<state-closed semigroup over [1 .. 2] with 2 generators>

gap> DecompositionOfFRElement(S.1);

[[<2|a*b^2>, <2|b*a>], [1, 1]]

gap> G := AutomatonGroup("a=(b,a)(1,2),b=(a,b),c=(c,a)(1,2)");

< a, b, c >

gap> Decompose(a*b^-2);

(b^-1, a^-1)(1,2)

gap> x := AutomGrp2FR(a*b^-2);

<2|a*b^-2>

gap> DecompositionOfFRElement(x);

[[<2|b^-1>, <2|a^-1>], [2, 1]]

Section 3. Some predefined groups 45

5.2 Trees
1 I NumberOfVertex(ver, deg) F

One can naturally enumerate all the vertices of the n-th level of the tree by the numbers 1, . . . , degn. This function
returns the number that corresponds to the vertex ver of the deg-ary tree. The vertex can be defined either as a list or
as a string.

gap> NumberOfVertex([1,2,1,2], 2);

6

gap> NumberOfVertex("333", 3);

27

2 I VertexNumber(num, lev, deg) F

One can naturally enumerate all the vertices of the lev-th level of the deg-ary tree by the numbers 1, . . . , degn. This
function returns the vertex of this level that has number num.

gap> VertexNumber(1, 3, 2);

[1, 1, 1]

gap> VertexNumber(4, 4, 3);

[1, 1, 2, 1]

5.3 Some predefined groups

Several groups are predefined as fields in the global variable AG Groups. Here is how to access, for example, Grig-
orchuk group

gap> G:=AG_Groups.GrigorchukGroup;

< a, b, c, d >

To perform operations with elements of G one can use AssignGeneratorVariables function.

gap> AssignGeneratorVariables(G);

#I Global variable ‘a’ is already defined and will be overwritten

#I Global variable ‘b’ is already defined and will be overwritten

#I Global variable ‘c’ is already defined and will be overwritten

#I Global variable ‘d’ is already defined and will be overwritten

#I Assigned the global variables [a, b, c, d]

gap> Decompose(a*b);

(c, a)(1,2)

Below is a list of all predefined groups with short description and references.

1 I GrigorchukGroup V

is the first Grigorchuk group, an infinite 2-group of intermediate growth constructed in [Gri80] (see [Gri05] for a
survey on this group). It is defined as the group generated by the automaton

a = (1, 1)(1, 2), b = (a, c), c = (a, d), d = (1, b).

The group is stored in the global variable AG Groups.GrigorchukGroup

2 I UniversalGrigorchukGroup V

is the universal group for the family of groups Gω (see [Gri84]). It is defined as a group acting on the 6-ary tree,
generated by the automaton

a = (1, 1, 1, 1, 1, 1)(1, 2), b = (a, a, 1, b, b, b), c = (a, 1, a, c, c, c), d = (1, a, a, d, d, d).

46 Chapter 5. Miscellaneous

The group is stored in the global variable AG Groups.UniversalGrigorchukGroup

3 I Basilica V

is the Basilica group. It was first studied in [GZ02a] and [GZ02b]. Later it became the first example of amenable, but
not subexponentially amenable group (see [BV05]). It is the iterated monodromy group of the map f (z) = z2 − 1. It
is generated by the automaton

u = (v, 1)(1, 2), v = (u, 1).

The group is stored in the global variable AG Groups.Basilica

4 I Lamplighter V

is the lamplighter group. This group was the key ingredient in the counterexample to the strong Atiyah conjecture
(see [GLSZ00]). It is generated by the automaton

a = (a, b)(1, 2), b = (a, b).

The group is stored in the global variable AG Groups.Lamplighter

5 I AddingMachine V

is the free abelian group of rank 1 (see [GNS00]) generated by the automaton

a = (1, a)(1, 2).

The group is stored in the global variable AG Groups.AddingMachine

6 I InfiniteDihedral V

is the infinite dihedral group (see [GNS00]) generated by the automaton

a = (a, a)(1, 2), b = (b, a).

The group is stored in the global variable AG Groups.InfiniteDihedral

7 I AleshinGroup V

is a group generated by the Aleshin automaton (see [Ale83]) defined by the following wreath recursion:

a = (b, c)(1, 2), b = (c, b)(1, 2), c = (a, a).

It is isomorphic to the free group of rank 3 as was proved by M.Vorobets and Y.Vorobets (see [VV07]). The group is
stored in the global variable AG Groups.AleshinGroup

8 I Bellaterra V

is a group generated by the Aleshin automaton (see [Ale83]) defined by the following wreath recursion:

a = (c, c)(1, 2), b = (a, b), c = (b, a).

It is isomorphic to the free product of 3 cyclic groups of order 2 (see [BGK+09]) The group is stored in the global
variable AG Groups.Bellaterra

9 I SushchanskyGroup V

is the self-similar closure of the faithful level-transitive action of the Sushchansky group on the ternary tree. The
original groups constructed in [Sus79] are infinite p-groups of intermediate growth acting on the p-ary tree. In [BS07]

Section 3. Some predefined groups 47

the action of these groups on the tree was simplified, so that, in particular, the self-similar closure of one of the
3-groups is generated by the automaton

A = (1, 1, 1)(1, 2, 3), A2 = (1, 1, 1)(1, 3, 2), B = (r1, q1,A),

r1 = (r2,A, 1), r2 = (r3, 1, 1), r3 = (r4, 1, 1),

r4 = (r5,A, 1), r5 = (r6,A2, 1), r6 = (r7,A, 1),

r7 = (r8,A, 1), r8 = (r9,A, 1), r9 = (r1,A2, 1),

q1 = (q2, 1, 1), q2 = (q3,A, 1), q3 = (q1,A, 1).

The group 〈A,B〉 is isomorphic to the original Sushchansky 3-group. The group is stored in the global variable
AG Groups.SushchanskyGroup

10 I Hanoi3 V
I Hanoi4 V

Groups related to the Hanoi towers game on 3 and 4 pegs correspondingly (see [GŠ06] and [GŠ08]). For 3 pegs
Hanoi3 is generated by the automaton

a23 = (a23, 1, 1)(2, 3), a13 = (1, a13, 1)(1, 3), a12 = (1, 1, a12)(1, 2),

while the automaton generating Hanoi4 is

a12 = (1, 1, a12, a12)(1, 2), a13 = (1, a13, 1, a13)(1, 3), a14 = (1, a14, a14, 1)(1, 4),

a23 = (a23, 1, 1, a23)(2, 3), a24 = (a24, 1, a24, 1)(2, 4), a34 = (a34, a34, 1, 1)(3, 4).

The groups are stored in the global variables AG Groups.Hanoi3 and AG Groups.Hanoi4

11 I GuptaSidki3Group V

is the Gupta-Sidki infinite 3-group constructed in [GS83] and generated by the automaton

a = (1, 1, 1)(1, 2, 3), b = (a, a−1, b).

The group is stored in the global variable AG Groups.GuptaSidki3Group

12 I GuptaFabrikowskiGroup V

is the Gupta-Fabrykowski group of intermediate growth constructed in [FG85] and generated by the automaton

a = (1, 1, 1)(1, 2, 3), b = (a, 1, b).

The group is stored in the global variable AG Groups.GuptaFabrikowskiGroup

13 I BartholdiGrigorchukGroup V

is the Bartholdi-Grigorchuk group studied in [BG02] and generated by the automaton

a = (1, 1, 1)(1, 2, 3), b = (a, a, b).

The group is stored in the global variable AG Groups.BartholdiGrigorchukGroup

48 Chapter 5. Miscellaneous

14 I GrigorchukErschlerGroup V

is the group of subexponential growth studied by Erschler in [Ers04]. It grows faster than exp(nα) for any α < 1. It
belongs to the class of groups constructed by Grigorchuk in [Gri84] and corresponds to the sequence 01010101 It
is generated by the automaton

a = (1, 1)(1, 2), b = (a, b), c = (a, d), d = (1, c).

The group is stored in the global variable AG Groups.GrigorchukErschlerGroup

15 I BartholdiNonunifExponGroup V

is the group of nonuniformly exponential growth constructed by Bartholdi in [Bar03]. Similar examples were con-
structed earlier in [Wil04] by Wilson. It is generated by the automaton

x = (1, 1, 1, 1, 1, 1, 1)(1, 5)(3, 7), y = (1, 1, 1, 1, 1, 1, 1)(2, 3)(6, 7), z = (1, 1, 1, 1, 1, 1, 1)(4, 6)(5, 7),

x1 = (x1, x, 1, 1, 1, 1, 1), y1 = (y1, y, 1, 1, 1, 1, 1), z1 = (z1, z, 1, 1, 1, 1, 1).

The group is stored in the global variable AG Groups.BartholdiNonunifExponGroup

16 I IMG z2plusI V

The iterated monodromy group of the map f (z) = z2 + i. It has intermediate growth (see [BP06]) and was studied in
[GSŠ07].

a = (1, 1)(1, 2), b = (a, c), c = (b, 1).

The group is stored in the global variable AG Groups.IMG z2plusI

17 I Airplane V
I Rabbit V

These are iterated monodromy groups of certain quadratic polynomials studied in [BN06]. It was proved there that
they are not isomorphic. The automata generating them are the following

a = (b, 1)(1, 2), b = (c, 1), c = (a, 1);

a = (b, 1)(1, 2), b = (1, c), c = (a, 1).

The groups are stored in the global variables AG Groups.Airplane and AG Groups.Rabbit

18 I TwoStateSemigroupOfIntermediateGrowth V

is the semigroup of intermediate growth studied in [BRS06]. It is generated by the automaton

f0 = (f0, f0)(1, 2), f1 = (f1, f0)[2, 2]·

The group is stored in the global variable AG Groups.TwoStateSemigroupOfIntermediateGrowth

19 I UniversalD omega V

is the group constructed in [Nek07] as the universal group which covers an uncountable family of groups parameter-
ized by infinite binary sequences. It is contracting with nucleus consisting of 35 elements. Its generating automaton is
as follows (it acts on the 4-ary tree):

a = (1, 2)(3, 4), b = (a, c, a, c), c = (b, 1, 1, b).

The group is stored in the global variable AG Groups.UniversalD omega

Index
This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.

A
AbelImage, 23
action, of tree homomorphism on letter, 33

of tree homomorphism on vertex, 33
AddingMachine, 46
AdjacencyMatrix, 39
AG AddRelators, 28
AG RewritingSystemRules, 28
AG UpdateRewritingSystem, 28
AG UseRewritingSystem, 27
Airplane, 48
AleshinGroup, 46
AllSections, 35
AreEquivalentAutomata, 42
AutomatonGroup, 9
AutomatonList, for automaton, 38

for tree homomorphism (semi)group, 15
AutomatonNucleus, 42
AutomatonSemigroup, 10
AutomGrp2FR, 44
AutomPortrait, 36
AutomPortraitBoundary, 36
AutomPortraitDepth, 36

B
BartholdiGrigorchukGroup, 47
BartholdiNonunifExponGroup, 48
Basic properties of groups and semigroups, 12
Basilica, 46
Bellaterra, 46

C
ContainsSphericallyTransitiveElement, 12
Contracting groups, 25
ContractingLevel, 26
ContractingTable, 26
Converters to and from FR package, 43
Creation of groups and semigroups, 9
Creation of tree automorphisms and homomorphisms, 30

D
Decompose, 34
Definition, 37
DegreeOfTree, 12
DiagonalPower, 23
DisjointUnion, 41
DoNotUseContraction, 26
DualAutomaton, 40

E
Elements of contracting groups, 36
Elements of groups and semigroups defined by wreath

recursion, 35

F
FindElement, 19
FindElementOfInfiniteOrder, 19
FindElements, 19
FindElementsOfInfiniteOrder, 19
FindGroupRelations, 17
FindNucleus, 20
FindSemigroupRelations, 18
FixesLevel, 16
FixesVertex, 17
FR2AutomGrp, 43

G
GeneratingSetWithNucleus, 25
GeneratingSetWithNucleusAutom, 25
GrigorchukErschlerGroup, 48
GrigorchukGroup, 45
GroupNucleus, 25
Growth, 19
GuptaFabrikowskiGroup, 47
GuptaSidki3Group, 47

H
Hanoi3, 47
Hanoi4, 47

50 Index

I
IMG z2plusI, 48
in, 34
InfiniteDihedral, 46
Installation instructions, 5
InverseAutomaton, 40
IsAcyclic, 40
IsAmenable, 15
IsAutomatonGroup, 12
IsAutomGroup, 11
IsBireversible, 40
IsBounded, 39
IsContracting, 13
IsFiniteState, for tree homomorphism, 35

for tree homomorphism (semi)group, 23
IsFractal, 12
IsFractalByWords, 12
IsGeneratedByAutomatonOfPolynomialGrowth, 14
IsGeneratedByBoundedAutomaton, 14
IsInvertible, 38
IsIRAutomaton, 40
IsMDReduced, 41
IsMDTrivial, 41
IsMealyAutomaton, 38
IsNoncontracting, 13
IsOfPolynomialGrowth, 39
IsOfSubexponentialGrowth, 15
IsomorphicAutomGroup, 23
IsomorphicAutomSemigroup, 24
IsomorphismPermGroup, 21
IsOne, 31
IsOneContr, 31
IsReversible, 40
IsSelfSimGroup, 12
IsSelfSimilar, 13
IsSelfSimilarGroup, 12
IsSphericallyTransitive, for tree homomorphism,

31
for tree homomorphism (semi)group, 12

IsTransitiveOnLevel, for tree homomorphism, 31
for tree homomorphism (semi)group, 13

IsTreeAutomorphismGroup, 11
IsTrivial, 38
Iterator, 18

L
Lamplighter, 46
LevelOfFaithfulAction, 20

ListOfElements, 20

M
MarkovOperator, 22
MDReduction, 41
MealyAutomaton, 37
MihailovaSystem, 22
MinimizationOfAutomaton, 38
MinimizationOfAutomatonTrack, 38
MonomorphismToAutomatonGroup, 25
MonomorphismToAutomatonSemigroup, 25
MultAutomAlphabet, 23

N
NumberOfStates, 38
NumberOfVertex, 45

O
Operations with groups and semigroups, 16
Operations with tree automorphisms and

homomorphisms, 33
OrbitOfVertex, 34
Order, 31
OrderUsingSections, 32

P
Perm, 32
PermActionOnLevel, 35
PermGroupOnLevel, 16
PermOnLevel, 32
PermOnLevelAsMatrix, 32
PolynomialDegreeOfGrowth, 39
PolynomialDegreeOfGrowthOfUnderlying-

Automaton, 14
PrintOrbitOfVertex, 35
product, for noninitial automata, 41

for tree homomorphisms, 33
Projection, 17
ProjectionNC, 17
ProjStab, 17
Properties and attributes of tree automorphisms and

homomorphisms, 31

Q
Quick example, 5

R
Rabbit, 48
Random, 21
RecurList, for tree homomorphism (semi)group, 15
Representative, 30

Index 51

Rewriting Systems, 27

S
Section, for tree homomorphism, 33
Sections, 34
Self-similar groups and semigroups defined by the wreath

recursion, 23
SelfSimilarGroup, 10
SelfSimilarSemigroup, 11
Short math background, 3
SizeOfAlphabet, 38
Some predefined groups, 45
SphericallyTransitiveElement, 19
StabilizerOfFirstLevel, 16
StabilizerOfLevel, 16
StabilizerOfVertex, 16
SubautomatonWithStates, 42
SushchanskyGroup, 46

T
Tools, 38
TopDegreeOfTree, 12

TransformationOnFirstLevel, 33
TransformationOnLevel, 33
TransformationOnLevelAsMatrix, 33
TransformationSemigroupOnLevel, 16
TreeAutomorphism, 30
TreeHomomorphism, 30
Trees, 45
TwoStateSemigroupOfIntermediateGrowth, 48

U
UnderlyingAutomaton, 15
UnderlyingAutomatonGroup, 25
UnderlyingAutomatonSemigroup, 25
UnderlyingAutomFamily, 23
UniversalD omega, 48
UniversalGrigorchukGroup, 45
UseContraction, 26

V
VertexNumber, 45

W
Word, 33

Bibliography

[AKL+12] Ali Akhavi, Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Matthieu Picantin. On the finiteness
problem for automaton (semi)groups. Internat. J. Algebra Comput., 22(6):1250052, 26, 2012.

[Ale83] S. V. Aleshin. A free group of finite automata. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (4):12–14, 1983.

[Bar03] Laurent Bartholdi. A Wilson group of non-uniformly exponential growth. C. R. Math. Acad. Sci. Paris,
336(7):549–554, 2003.

[BG02] Laurent Bartholdi and Rostislav I. Grigorchuk. On parabolic subgroups and Hecke algebras of some fractal
groups. Serdica Math. J., 28(1):47–90, 2002.

[BGK+08] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić.
Classification of groups generated by 3-state automata over 2-letter alphabet. Algebra Discrete Math., (1):1–
163, 2008.

[BGK+09] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić.
Groups generated by 3-state automata over a 2-letter alphabet. II. J. Math. Sci. (N. Y.), 156(1):187–208,
2009. Functional analysis.

[BKN10] Laurent Bartholdi, Vadim Kaimanovich, and Volodymyr Nekrashevych. On amenability of automata groups.
Duke Mathematical Journal, 154(3):575–598, 2010.

[BN06] Laurent I. Bartholdi and Volodymyr V. Nekrashevych. Thurston equivalence of topological polynomials.
Acta Math., 197(1):1–51, 2006.

[BP06] Kai-Uwe Bux and Rodrigo Pérez. On the growth of iterated monodromy groups. In Topological and
asymptotic aspects of group theory, volume 394 of Contemp. Math., pages 61–76. Amer. Math. Soc.,
Providence, RI, 2006. (available at http://www.arxiv.org/abs/math.GR/0405456).

[BRS06] L. Bartholdi, I. I. Reznykov, and V. I. Sushchansky. The smallest Mealy automaton of intermediate growth.
J. Algebra, 295(2):387–414, 2006.

[BS07] Ievgen V. Bondarenko and Dmytro M. Savchuk. On Sushchansky p-groups. Algebra Discrete Math., (2):22–
42, 2007.

[BV05] Laurent Bartholdi and Bálint Virág. Amenability via random walks. Duke Math. J., 130(1):39–56, 2005.
(available at http://arxiv.org/abs/math.GR/0305262).

[Ers04] Anna Erschler. Boundary behavior for groups of subexponential growth. Annals of Math., 160(3):1183–1210,
2004.

[FG85] Jacek Fabrykowski and Narain Gupta. On groups with sub-exponential growth functions. J. Indian Math.
Soc. (N.S.), 49(3-4):249–256 (1987), 1985.

[GLSZ00] Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, and Andrzej Zuk. On a question of Atiyah. C. R.
Acad. Sci. Paris Sér. I Math., 331(9):663–668, 2000.

[GNS00] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskiı̆. Automata, dynamical systems, and groups. Tr.
Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):134–214, 2000.

[Gri80] R. I. Grigorčuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen., 14(1):53–54,
1980.

[Gri84] R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv.
Akad. Nauk SSSR Ser. Mat., 48(5):939–985, 1984.

Bibliography 53

[Gri05] Rostislav Grigorchuk. Solved and unsolved problems around one group. In Infinite groups: geometric,
combinatorial and dynamical aspects, volume 248 of Progr. Math., pages 117–218. Birkhäuser, Basel, 2005.

[GS83] Narain Gupta and Saı̈d Sidki. On the Burnside problem for periodic groups. Math. Z., 182(3):385–388, 1983.

[GŠ06] Rostislav Grigorchuk and Zoran Šuniḱ. Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C.
R. Math. Acad. Sci. Paris, 342(8):545–550, 2006.

[GŠ08] Rostislav Grigorchuk and Zoran Šunić. Schreier spectrum of the Hanoi Towers group on three pegs. In
Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., pages 183–198. Amer.
Math. Soc., Providence, RI, 2008.

[GS14] Rostislav Grigorchuk and Dmytro Savchuk. Self-similar groups acting essentially freely on the boundary of
the binary rooted tree. In Group Theory, Combinatorics, and Computing, volume 611 of Contemp. Math.
Amer. Math. Soc., Providence, RI, 2014.

[GSŠ07] Rostislav Grigorchuk, Dmytro Savchuk, and Zoran Šunić. The spectral problem, substitutions and iterated
monodromy. CRM Proceedings and Lecture Notes, 42(8):225–248, 2007.

[GZ02a] Rostislav I. Grigorchuk and Andrzej Zuk. On a torsion-free weakly branch group defined by a three state
automaton. Internat. J. Algebra Comput., 12(1-2):223–246, 2002.

[GZ02b] Rostislav I. Grigorchuk and Andrzej Zuk. Spectral properties of a torsion-free weakly branch group defined
by a three state automaton. In Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ,
2001), volume 298 of Contemp. Math., pages 57–82. Amer. Math. Soc., Providence, RI, 2002.

[Kli13] Ines Klimann. The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is
decidable. In Natacha Portier and Thomas Wilke, editors, 30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013), volume 20 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 502–513, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Nek07] Volodymyr Nekrashevych. A minimal Cantor set in the space of 3-generated groups. Geom. Dedicata,
124:153–190, 2007.

[Sid00] Said Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. (New
York), 100(1):1925–1943, 2000.

[Sus79] V. I. Sushchansky. Periodic permutation p-groups and the unrestricted Burnside problem. DAN SSSR.,
247(3):557–562, 1979. (in Russian).

[VV07] Mariya Vorobets and Yaroslav Vorobets. On a free group of transformations defined by an automaton. Geom.
Dedicata, 124:237–249, 2007.

[Wil04] John S. Wilson. On exponential growth and uniformly exponential growth for groups. Invent. Math.,
155(2):287–303, 2004.

	Contents
	Introduction
	Short math background
	Installation instructions
	Quick example

	Properties and operations with groups and semigroups
	Creation of groups and semigroups
	Basic properties of groups and semigroups
	Operations with groups and semigroups
	Self-similar groups and semigroups defined by the wreath recursion
	Contracting groups
	Rewriting Systems

	Properties and operations with group and semigroup elements
	Creation of tree automorphisms and homomorphisms
	Properties and attributes of tree automorphisms and homomorphisms
	Operations with tree automorphisms and homomorphisms
	Elements of groups and semigroups defined by wreath recursion
	Elements of contracting groups

	Noninitial automata
	Definition
	Tools

	Miscellaneous
	Converters to and from FR package
	Trees
	Some predefined groups

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Bibliography

