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Welcome to the Jupyter Project documentation. This website acts as “meta” documentation for the Jupyter ecosys-
tem. It has a collection of resources to navigate the tools and communities in this ecosystem, and to help you get
started.

CONTENTS 1
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3.1 Get Started

3.1.1 Try Jupyter

Contents

* Try in Your Browser. No Installation Needed.

* Are You Ready to Install Jupyter?

Try in Your Browser. No Installation Needed.

Try Jupyter (https://try.jupyter.org) is a site for trying out the Jupyter Notebook, equipped with kernels for several
different languages (Julia, R, C++, Scheme, Ruby) without installing anything. You will also find there an example to
try out the new JupyterLab interface.

When running the examples on the Try Jupyter site, you will get a temporary Jupyter server running on mybinder.org
which you can use to play around until you close your browser session.

The Classic Notebook example should look like this:
Notebook Dashboard



https://try.jupyter.org
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Notebook Editor
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Welcome to the Temporary Notebook (tmpnb) service!

WARNING
Don't rely on this server for anything you want to last - your server will be deleted after 10 minutes of inactivity.

Your server is hosted thanks to Rackspace, on their on-demand bare metal servers, OnMetal.

This Notebook Server was launched just for you. It's a temporary way for you to try out a recent development version of the IPython/Jupyter notebook.

(3mckspace

Run some Python code!
To run the code below:

1. Click on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button ( B ) in the toolbar above.

A full tutorial for using the notebook interface is available here.

In [ ]: :matplotlib notebook

import pandas as pd
import numpy as np
import matplotlib

from matplotlib import pyplot as plt
import seaborn as sns

ts
ts

= pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
= ts.cumsum()
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=['A', 'B', 'C', 'D'])
df = df.cumsum()
df.plot(); plt.legend(loc='best')

Feel free to open new cells using the plus button ( 4 ), or hitting shift-enter while this cell is selected.

Behind the scenes, the software that powers this is tmpnb, a Tornado ication that spawns pre-built Docker containers and then uses the

Are You Ready to Install Jupyter?

If you have tried Jupyter and like it, please use our detailed /nstallation Guide to install Jupyter on your computer.

3.1. Get Started
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3.1.2 Install and Use

This page contains information and links about installing and using tools across the Jupyter ecosystem. Generally
speaking, the documentation of each tool is the place to learn about the best-practices for how to install and use the
tool.

Jupyter Notebook Interface
The Jupyter Notebook interface is a Web-based application for authoring documents that combine live-code with
narrative text, equations and visualizations.

¢ GitHub Repo

* Docs

Installing the classic Jupyter Notebook interface

This section includes instructions on how to get started with Jupyter Notebook. But there are multiple Jupyter user
interfaces one can use, based on their needs. Please checkout the list and links below for additional information and
instructions about how to get started with each of them.

This information explains how to install the Jupyter Notebook and the IPython kernel.

Prerequisite: Python

While Jupyter runs code in many programming languages, Python is a requirement (Python 3.3 or greater, or Python
2.7) for installing the Jupyter Notebook.

We recommend using the Anaconda distribution to install Python and Jupyter. We’ll go through its installation in the
next section.

Installing Jupyter using Anaconda and conda

For new users, we highly recommend installing Anaconda. Anaconda conveniently installs Python, the Jupyter
Notebook, and other commonly used packages for scientific computing and data science.

Use the following installation steps:
1. Download Anaconda. We recommend downloading Anaconda’s latest Python 3 version (currently Python 3.7).
2. Install the version of Anaconda which you downloaded, following the instructions on the download page.

3. Congratulations, you have installed Jupyter Notebook. To run the notebook:

jupyter notebook

See Running the Notebook for more details.

10 Chapter 3. Table of Contents
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Alternative for experienced Python users: Installing Jupyter with pip

Important: Jupyter installation requires Python 3.3 or greater, or Python 2.7. IPython 1.x, which included the parts
that later became Jupyter, was the last version to support Python 3.2 and 2.6.

As an existing Python user, you may wish to install Jupyter using Python’s package manager, pip, instead of Anaconda.

First, ensure that you have the latest pip; older versions may have trouble with some dependencies:

’pipiﬂ install —--upgrade pip ‘

Then install the Jupyter Notebook using:

’pipiﬂ install jupyter ‘

(Use pip if using legacy Python 2.)

Congratulations. You have installed Jupyter Notebook. See Running the Notebook for more details.

Upgrading Jupyter Notebook

Contents

» Upgrading Jupyter Notebook using Anaconda

* Upgrading IPython Notebook to Jupyter Notebook

Upgrading Jupyter Notebook using Anaconda

If using Anaconda, update Jupyter using conda:

conda update jupyter

See Run the Notebook for running the Jupyter Notebook.

Upgrading IPython Notebook to Jupyter Notebook

The Jupyter Notebook used to be called the IPython Notebook. If you are running an older version of the [Python
Notebook (version 3 or earlier) you can use the following to upgrade to the latest version of the Jupyter Notebook.

If using Anaconda, update Jupyter using conda:

conda update jupyter ‘

or

If using pip:

’pip install -U jupyter ‘

3.1. Get Started 11
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See Run the Notebook for running the Jupyter Notebook.
See also:

The migrating document has additional information about migrating from IPython 3 to Jupyter.

Jupyter Lab

JupyterLab is a next-generation web-based user interface for Project Jupyter.
* GitHub Repo
* Docs

¢ Install instructions

Jupyter Hub

JupyterHub is a multi-user hub for interactive computing sessions, made for teams and organizations, and with
pluggable authentication and scalability.

* GitHub Repo
* Docs

¢ Install instructions

Jupyter Console

The Jupyter Console is a terminal-based console for interactive computing.
* GitHub Repo

¢ Docs and Install instructions

Jupyter QtConsole

The Jupyter QtConsole is a Qt application for interactive computing with rich output.
* GitHub Repo
* Docs

¢ Install instructions

Jupyter Kernels

You can install Jupyter Kernels to add support for new languages and code behavior.

12 Chapter 3. Table of Contents
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Installing Kernels

This information gives a high-level view of using Jupyter Notebook with different programming languages (kernels).

Are any languages pre-installed?

Yes, installing the Jupyter Notebook will also install the IPython kernel. This allows working on notebooks using the
Python programming language.

How do | install Python 2 and Python 3?

To install an additional version of Python, i.e. to have both Python 2 and 3 available, see the IPython docs on installing
kernels.

How do I install other languages like R or Julia?

To run notebooks in languages other than Python, such as R or Julia, you will need to install additional kernels. For
more information, see the full list of available kernels.

See also:
Jupyter Projects Detailed installation instructions for individual Jupyter or IPython projects.
Kernels Information about additional programming language kernels.

Kernels documentation for Jupyter client Technical information about kernels.

3.1.3 Running the Notebook

Contents

* Basic Steps
* Starting the Notebook Server

* Introducing the Notebook Server’s Command Line Options

How do I open a specific Notebook?

— How do I start the Notebook using a custom IP or port?

How do I start the Notebook server without opening a browser?

How do I get help about Notebook server options?

3.1. Get Started 13


https://ipython.readthedocs.io/en/latest/
https://ipython.readthedocs.io/en/latest/install/kernel_install.html
https://ipython.readthedocs.io/en/latest/install/kernel_install.html
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://jupyter-client.readthedocs.io/en/latest/kernels.html#kernels

Jupyter Documentation, Release 4.1.1 alpha

Basic Steps

1. Start the notebook server from the command line:

jupyter notebook

2. You should see the notebook open in your browser.

Starting the Notebook Server

After you have installed the Jupyter Notebook on your computer, you are ready to run the notebook server. You can

start the notebook server from the command line (using Terminal on Mac/Linux, Command Prompt on Windows) by
running:

jupyter notebook

This will print some information about the notebook server in your terminal, including the URL of the web application
(by default, http://localhost:8888):

$ jupyter notebook

[T 08:58:24.417 NotebookApp] Serving notebooks from local directory: /Users/catherine
[T 08:58:24.417 NotebookApp] 0 active kernels

[T 08:58:24.417 NotebookApp] The Jupyter Notebook is running at: http://
—localhost:8888/

[T 08:58:24.417 NotebookApp] Use Control-C to stop this server and shut down all
—kernels (twice to skip confirmation).

It will then open your default web browser to this URL.

When the notebook opens in your browser, you will see the Notebook Dashboard, which will show a list of the
notebooks, files, and subdirectories in the directory where the notebook server was started. Most of the time, you

will wish to start a notebook server in the highest level directory containing notebooks. Often this will be your home
directory.

Notebook Dashboard

14 Chapter 3. Table of Contents
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Introducing the Notebook Server’s Command Line Options

How do | open a specific Notebook?

The following code should open the given notebook in the currently running notebook server, starting one if necessary.

jupyter notebook notebook.ipynb

How do | start the Notebook using a custom IP or port?

By default, the notebook server starts on port 8888. If port 8888 is unavailable or in use, the notebook server searches
the next available port. You may also specify a port manually. In this example, we set the server’s port to 9999:

jupyter notebook --port 9999

How do | start the Notebook server without opening a browser?

Start notebook server without opening a web browser:

jupyter notebook --no-browser

3.1. Get Started 15
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How do | get help about Notebook server options?

The notebook server provides help messages for other command line arguments using the ——he1p flag:

jupyter notebook —--help

See also:

Jupyter Installation, Configuration, and Usage Detailed information about command line arguments, configuration,
and usage.

3.2 Using Jupyter Tools
Information relevant to using the various tools in the Jupyter ecosystem.

3.2.1 Narratives and Use Cases

Notebook Narratives

Contents

* Description

* Narrative examples

Description

The Notebook Narratives explore uses of the Jupyter Notebook in a variety of applications.

Narrative examples

* Using the Notebook for data exploration

 Using extensions and widgets

* Using nbconvert for code execution and workflow simplification
 Using nbconvert for publishing

» Using multiple language kernels

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.
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JupyterHub Narratives

Contents

* Description

* Narrative examples

Description

JupyterHub Narratives explore deployment and scaling of the Jupyter Notebook for a group of users. JupyterHub
allows flexibility in configuration and deployment which makes JupyterHub valuable to education, industry research
teams, and service providers. In these Narratives, we will look at differences in deployment, deployment advantages,
and best practices.

Narrative examples

* A basic JupyterHub deployment
* A reference deployment of JupyterHub using Docker

¢ Teaching a Course with JupyterHub and nbgrader using a reference deployment on a single server and Ansible
scripts to automate set up

e Teaching a Course with JupyterHub, nbgrader, and containers

* JupyterHub deployments using Containers including Docker

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

Narratives - Building blocks

Contents

* Description

* Narrative examples

Description

This section presents some examples of integrating different projects together. These projects form the foundation of
innovative services and provide building blocks for future applications.

3.2. Using Jupyter Tools 17
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Narrative examples

* A Narrative about Creating Dashboards
* A Narrative about Thebe

* A Narrative about Hydrogen

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

Jupyter for Data Science

The purpose of this page is to highlight kernels and other projects that are central to the usage of Jupyter in data
science. This page is not meant to be comprehensive or unbiased, but rather to provide an opinionated view of the
usage of Jupyter in data science based on our interactions with users.

The following Jupyter kernels are widely used in data science:

* python
— IPython (GitHub Repo)
*R
— IRkernel (Documentation, GitHub Repo)
— IRdisplay (GitHub Repo)
— repr (GitHub Repo)
e Julia

TJulia Kernel (GitHub Repo)

Interactive Widgets (GitHub Repo)
* Bash (GitHub Repo)

Jupyter and Scientific Computing

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

Jupyter in Education

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.
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Jupyter in the Enterprise

Contents

* Description

* Example Use-Cases

Description

Businesses, especially those that started their ‘digital transformation’ journey, are producing ever-increasing volumes
of data. Enterprise data science aims to unearth the hidden value of those digital assets, which are typically siloed,
uncategorized, and inaccessible to humans.

Jupyter and JupyterHub can play a major role in related initiatives, especially in companies with an established open-
source culture. The intent of this page is to provide you with ideas how Jupyter technology can fit into your organiza-
tion’s processes and system landscapes, by providing real-world examples and showcases.

Example Use-Cases

* Beyond Interactive: Notebook Innovation at Netflix
— Part 2: Scheduling Notebooks at Netflix
» PayPal Notebooks: Data science and machine learning at scale, powered by Jupyter (JupyterCon 2018 - video)
* Bloomberg BQuant platform
* Jupyter & Python in the corporate LAN
e DevOps Intelligence with JupyterHub

Note: We’re actively working on this section of the documentation to improve it for you. If you’ve got a suggestion
for a resource that would be helpful, please create an issue or a pull request!

What are Narratives?

Narratives are collaborative, shareable, publishable, and reproducible. We believe that Narratives help both yourself
and other researchers by sharing your use of Jupyter projects, technical specifics of your deployment, and installation
and configuration tips so that others can learn from your experiences.

3.2. Using Jupyter Tools 19
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3.2.2 The jupyter Command

Synopsis

jupyter <subcommand> [options]

Description

Commands like jupyter notebook start Jupyter applications. The jupyter command is primarily a names-
pace for subcommands. A command like jupyter—foo found on your PATH will be available as a subcommand
jupyter foo.

The jupyter command can also be used to do actions other than starting a Jupyter application.

Command options
-h, —--help
Show help information, including available subcommands.

——config-dir
Show the location of the config directory.

——-data-dir
Show the location of the data directory.

——runtime-dir
Show the location of the runtime directory.

——paths
Show all Jupyter directories and search paths.

——json
Print directories and search paths in machine-readable JSON format.

3.2.3 Common Directories and File Locations

Contents

* Configuration files
* Data files

* Runtime files

* Summary

Jupyter stores different files (i.e. configuration, data, runtime) in a number of different locations. Environment vari-
ables may be set to customize for the location of each file type.

Jupyter separates data files (nbextensions, kernelspecs) from runtime files (logs, pid files, connection files) from
configuration (config files, custom.js).

20 Chapter 3. Table of Contents
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Configuration files

Config files are stored by default in the ~/ . jupyter directory.

JUPYTER_CONFIG_DIR
Set this environment variable to use a particular directory, other than the default, for Jupyter config files.

Besides the JUPYTER CONFIG_DIR, additional directories to search can be specified through
JUPYTER CONFIG _PATH.

JUPYTER_CONFIG_PATH

Set this environment variable to provide extra directories for the config search path.
:envvar: JUPYTER_CONFIG_PATH  should contain a series of directories, seperated by
os.pathsep on Windows, " : " on Unix).

NI NI NENEENIN
(O

An example of where the JUPYTER CONFIG_PATH can be set is if notebook or server extensions are installed in a
custom prefix. Since notebook and server extensions are automatically enabled through configuration files, automatic
enabling will only work if the custom prefix’s et ¢/ jupyter directory is added to the Jupyter config search path.

Besides the user config directory mentioned above, Jupyter has a search path of additional locations from which a
config file will be loaded. Here’s a table of the locations to be searched, in order of preference:

Unix | Windows

JUPYTER _CONFIG_DIR

JUPYTER CONFIG _PATH
{sys.prefix}/etc/jupyter/
/usr/local/etc/jupyter/ /etc/jupyter/

$PROGRAMDATA%\ jupyter\

To list the config directories currrently being used you can run the below command from the command line:

’jupyter ——paths

The following command shows the config directory specifically::

’jupyter ——config-dir ‘

Data files

Jupyter uses a search path to find installable data files, such as kernelspecs and notebook extensions. When searching
for a resource, the code will search the search path starting at the first directory until it finds where the resource is
contained.

Each category of file is in a subdirectory of each directory of the search path. For example, kernel specs are in
kernels subdirectories.

JUPYTER_PATH
Set this environment variable to provide extra directories for the data search path. JUPYTER PATH should
contain a series of directories, separated by os.pathsep (; on Windows, : on Unix). Directories given
in JUPYTER_PATH are searched before other locations. This is used in addition to other entries, rather than
replacing any.

3.2. Using Jupyter Tools 21
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Linux (& other free desktops) | Mac | Windows

JUPYTER PATH

JUPYTER_DATA DIR or (if not set) ~/ JUPYTER DATA DIR or | JUPYTER DATA DIR or

.local/share/jupyter/ (respects | (if not set) ~/Library/ | (if not set) %APPDATA%\

$XDG_DATA_HOME) Jupyter jupyter

{sys.prefix}/share/jupyter/

/usr/local/share/jupyter /usr/share/jupyter $PROGRAMDATA\
Jjupyter

The config directory for Jupyter data files, which contain non-transient, non-configuration files. Examples include
kernelspecs, nbextensions, or voila templates.

JUPYTER_DATA_DIR
Set this environment variable to use a particular directory, other than the default, as the user data directory.

As mentioned above, to list the config directories currently being used you can run the below command from the
command line:

jupyter —-paths

The following command shows the data directory specificially::

jupyter —--data-dir

Runtime files

Things like connection files, which are only useful for the lifetime of a particular process, have a runtime directory.

On Linux and other free desktop platforms, these runtime files are stored in $XDG_RUNTIME_DIR/ jupyter by
default. On other platforms, it’s a runt ime/ subdirectory of the user’s data directory (second row of the table above).

An environment variable may also be used to set the runtime directory.

JUPYTER_RUNTIME_DIR
Set this to override where Jupyter stores runtime files.

As mentioned above, to list the config directories currently being used you can run the below command from the
command line:

’jupyter —-—-paths

The following command shows the runtime directory specifically::

’jupyter ——runtime-dir
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Summary

JUPYTER_CONFIG_DIR for config file location
JUPYTER_CONFIG_PATH for config file locations

JUPYTER_PATH for datafile directory locations

JUPYTER_DATA DIR for data file location

JUPYTER RUNTIME DIR for runtime file location

See also:

jupyter_core.paths The Python API to locate these directories.

The jupyter Command Locate these directories from the command line.

3.2.4 Jupyter’'s Common Configuration Approach

Contents

* Summary

» The Python config file

» Command line options for configuration

Summary

Common Jupyter configuration system The Jupyter applications have a common config system, and a common
config directory. By default, this directory is ~/ . jupyter.

Kernel configuration directories If kernels use config files, these will normally be organised in separate directories
for each kernel. For instance, the IPython kernel looks for files in the [Python directory instead of the default Jupyter
directory ~/ . jupyter.

The Python config file

To create a default config file, run:

jupyter {application} --generate-config ‘

The generated file will be named jupyter_application_config.py.

By editing the jupyter_application_config.py file, you can configure class attributes like this:

c.NotebookApp.port = 8754 ‘

Be careful with spelling. Incorrect names will simply be ignored, with no error message.

To add to a collection which may have already been defined elsewhere, you can use methods like those found on lists,
dicts and sets: append, extend, prepend () (like extend, but at the front), add, and update (which works both
for dicts and sets):
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c.TemplateExporter.template_path.append('./templates')

Command line options for configuration

Every configurable value can also be set from the command line and passed as an argument, using this syntax:

jupyter notebook —--NotebookApp.port=8754

Frequently used options will also have short aliases and flags, such as ——port 8754 or ——no-browser.

To see the abbreviated options, pass ——help or ——help-all as follows:

jupyter {application} —--help # Just the short options
jupyter {application} --help-all # Includes options without short names

Command line options will override options set within a configuration file.
See also:

traitlets.config The low-level architecture of this config system.

3.2.5 Advanced Use Cases

Migrating from IPython Notebook

Contents

» Abstract
* Understanding the Migration Process
— Automatic migration of files
— Where have my configuration files gone?
* Finding the Location of Important Files
— Configuration files
— Data files: kernelspecs and notebook extensions
* Since Jupyter does not have profiles, how do I customize it?
— Changing the Jupyter notebook configuration directory
— Changing the Jupyter notebook configuration file
— Changing IPython’s profile using custom kernelspecs
* Understanding Installation Changes
— Notebook extensions

— Kernels

* Understanding Changes in imports
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Abstract

The Big Split moved IPython’s various language-agnostic components under the Jupyter umbrella. Going forward,
Jupyter will contain the language-agnostic projects that serve many languages. IPython will continue to focus on
Python and its use with Jupyter.

This document describes what has changed, and how you may need to modify your code or configuration when
migrating from IPython version 3 to Jupyter.

Understanding the Migration Process
Automatic migration of files

The first time you run any jupyter command, it will perform an automatic migration of files. The automatic
migration process copies files, instead of moving files, leaving the originals in place and the copies in the Jupyter file
locations. You can re-run the migration, if needed, by calling jupyter migrate. Your custom configuration will
be migrated automatically and should work with Jupyter without further editing. When you update or modify your
configuration in the future, please keep in mind that the file locations may have changed.

Where have my configuration files gone?

Also known as: “Why isn’t my configuration having any effect anymore?”

Jupyter splitting out from IPython means that the locations of some files have moved, and Jupyter projects have not
inherited everything from how IPython did it.

When you start your first Jupyter application, the relevant configuration files are automatically copied to their new
Jupyter locations. The original configuration files in the IPython locations have no effect on Jupyter’s execution. If
you accidentally edit your original IPython config file, you may not see the desired effect with Jupyter now. You
should check that you are editing Jupyter’s configuration file, and you should see the expected effect after restarting
the Jupyter server.

Finding the Location of Important Files

This section provides quick reference for common locations of IPython 3 files and the migrated Jupyter files.

Configuration files

Configuration files customize Jupyter to the user’s preferences. The migrated files should all be automatically copied
to their new Jupyter locations. Here are the location changes:

IPython location Jupyter location
~/.ipython/profile_default/static/custom — | ~/.jupyter/custom
~/.ipython/profile_default/ — | ~/.Jjupyter/
ipython_notebook_config.py Jjupyter_notebook_config.py
~/.ipython/profile_default/ — | ~/.Jjupyter/
ipython_nbconvert_config.py jupyter_nbconvert_config.py
~/.ipython/profile_default/ — | ~/.jupyter/
ipython_gtconsole_config.py Jjupyter_gtconsole_config.py
~/.ipython/profile_default/ — | ~/.Jjupyter/
ipython_console_config.py jupyter_console_config.py
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To choose a directory location other than the default ~/ . jupyter, set the JUPYTER_CONFIG_DIR environment
variable. You may need to run jupyter migrate after setting the environment variable for files to be copied to
the desired directory.

Data files: kernelspecs and notebook extensions

Data files include files, other than configuration files, which are user installed. Examples include kernelspecs and
notebook extensions. Like the configuration files, data files are also automatically migrated to their new Jupyter
locations.

In IPython 3, data files lived in ~/ . ipython.
In Jupyter, data files use platform-appropriate locations:

¢ OSX: ~/Library/Jupyter

* Windows: the location specified in $APPDATAS environment variable

» Elsewhere, $XDG_DATA_HOME is respected, with the default of ~/.local/share/jupyter
In all cases, the JUPYTER_DATA_DIR environment variable can be used to set a location explicitly.

Data files installed system-wide (e.g. in /usr/local/share/jupyter) have not changed. Per-user installation
of data files has changed location from . ipython to the platform-appropriate Jupyter location.

Since Jupyter does not have profiles, how do | customize it?

While IPython has the concept of profiles, Jupyter does not have profiles.

In IPython, profiles are collections of configuration and runtime files. Inside the IPython directory (~/ . ipython),
there are directories with names like profile_default or profile_demo. In each of these are configura-
tion files (ipython_config.py, ipython_notebook_config.py) and runtime files (history.sglite,
security/kernel-x. json). Profiles could be used to switch between configurations of IPython.

Previously, people could use commands like ipython notebook —--profile demo to set the profile for both
the notebook server and the IPython kernel. This is no longer possible in one go with Jupyter, just like it wasn’t
possible in IPython 3 for any other kernels.

Changing the Jupyter notebook configuration directory

If you want to change the notebook configuration, you can set the JUPYTER_CONFIG_DIR:

JUPYTER_CONFIG_DIR=./jupyter_config
jupyter notebook

Changing the Jupyter notebook configuration file

If you just want to change the config file, you can do:

jupyter notebook —--config=/path/to/myconfig.py
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Changing IPython’s profile using custom kernelspecs

If you do want to change the IPython kernel’s profile, you can’t do this at the server command-line anymore. Kernel
arguments must be changed by modifying the kernelspec. You can do this without relaunching the server. Kernelspec
changes take effect every time you start a new kernel. However, there isn’t a great way to modify the kernelspecs. One
approach uses jupyter kernelspec list tofindthe kernel. json file and then modifiesit, e.g. kernels/
python3/kernel. json, by hand. Alternatively, a2km is an experimental project that tries to make these things
easier.

For example, add the ——profile option to a custom kernelspec under kernels/mycustom/kernel. json
(see the Jupyter kernelspec directions here):

{
"argv": ["python", "-m",
"-—profile=my-ipython-profile",
"-f", "{connection_file}"],
"display_ name": "Custom Profile Python",
"language": "python"
}

"ipykernel",

You can then run Jupyter with the ——kernel=mycustom command-line option and IPython will find the appropriate
profile.

Understanding Installation Changes

See the Install and Use page for more information about installing Jupyter. Jupyter automatically migrates some
things, like Notebook extensions and kernels.

Notebook extensions

Any IPython notebook extensions should be automatically migrated as part of the data files migration.

Notebook extensions were installed with:

ipython install-nbextension [--user] EXTENSION

Now, extensions are installed with:

’jupyter nbextension install [--user] EXTENSION

The notebook extensions will be installed in a system-wide location (e.g. /usr/local/share/jupyter/
nbextensions). If doing a ——user install, the notebook extensions will go in the JUPYTER_DATA_DIR lo-
cation. Installation SHOULD NOT be done manually by guessing where the files should go.
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Kernels

Kernels are installed in much the same way as notebook extensions. They will also be automatically migrated.

Kernel specs used to be installed with:

ipython kernelspec install [--user] KERNEL

They are now installed with:

’jupyter kernelspec install [--user] KERNEL

|

By default, kernel specs will go in a system-wide location (e.g. /usr/local/share/jupyter/kernels). If
doing a ——user install, the kernel specs will go in the JUPYTER_DATA_DIR location. Installation SHOULD NOT
be done manually by guessing where the files should go.

Understanding Changes in imports

IPython 4.0 includes shims to manage dependencies; so, all imports that work on IPython 3 should continue to work
on IPython 4. If you find any differences, please let us know.

Some changes include:

IPython 3 Jupyter and IPython 4.0
IPython.html — | notebook
IPython.html.widgets — | ipywidgets
IPython.kernel — | jJupyter_client, ipykernel
IPython.parallel — | ipyparallel
IPython.gt.console — | gtconsole
IPython.utils.traitlets | — | traitlets
IPython.config — | traitlets.config

Important: The IPython.kernel Split
IPython.kernel became two packages:
* jupyter_client for the Jupyter client-side APIs.

e ipykernel for Jupyter’s IPython kernel

3.2.6 Installation
3.2.7 Use and Configure

3.2.8 How do | decide which packages | need?

Jupyter can be used for many different use-cases. Below are a few user stories for when and how you might use tools
in the Jupyter ecosystem, as well as a diagram that helps lay out some of your options.
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3.2.9 Advanced topics

3.3 Jupyter Projects

The Jupyter community is composed of several sub-communities and projects. These are organized around particular
use-cases, users, or other aspects of the Jupyter community. This section contains information to help navigate these
projects both from the perspective of a user and a community member.

3.3.1 Jupyter User Interfaces
The Jupyter user interfaces offer a foundation of interactive computing environments where scientific computing, data
science, and analytics can be performed using a wide range of programming languages.

Jupyter Notebook Web-based application for authoring documents that combine live-code with narrative text, equa-
tions and visualizations. Documentation | Repo

Jupyter Console Terminal based console for interactive computing. Documentation | Repo

Jupyter QtConsole Qt application for interactive computing with rich output. Documentation | Repo

3.3.2 Kernels (Programming Languages)
The Jupyter team maintains the IPython kernel since the Jupyter notebook server depends on the IPython kernel
functionality. Many other languages, in addition to Python, may be used in the notebook.

The community maintains many other language kernels, and new kernels become available often. Please see the list
of available kernels for additional languages and kernel installation instructions to begin using these language kernels.
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Kernels

Kernels are programming language specific processes that run independently and interact with the Jupyter Applications
and their user interfaces. [Python is the reference Jupyter kernel, providing a powerful environment for interactive
computing in Python.

IPython interactive computing in Python. Documentation | Repo

ipywidgets interactive widgets for Python in the Jupyter Notebook. Documentation | Repo

ipyparallel lightweight parallel computing in Python offering seamless notebook integration. Documentation | Repo
See also:

Jupyter kernels

A full list of kernels available for other languages. Many of these kernels are developed by third parties and may or
may not be stable.

3.3.3 Education

Jupyter Notebooks offer exciting and creative possibilities in education. The following subprojects are focused on
supporting the use of Jupyter Notebook in a variety of educational settings.

nbgrader tools for managing, grading, and reporting of notebook based assignments. Documentation | Repo

3.3.4 Deployment and infrastructure
To serve a variety of users and use cases, these subprojects are being developed to support notebook deployment in
various contexts, including multiuser capabilities and secure, scalable cloud deployments.

Jjupyterhub Multi-user notebook for organizations with pluggable authentication and scalability. Documentation |
Repo

jupyter-drive Store notebooks on Google Drive. Documentation | Repo

nbviewer Share notebooks as static HTML on the web. Documentation | Repo

tmpnb Create temporary, transient notebooks in the cloud. Documentation | Repo

tmpnb-deploy Deployment tools for tmpnb. Documentation | Repo

dockerspawner Deploy notebooks for ‘jupyterhub’ inside Docker containers. Documentation | Repo

docker-stacks Stacks of Jupyter applications and kernels as Docker containers. Documentation | Repo

3.3.5 Formatting and Conversion

Notebooks are rich interactive documents that combine live code, narrative text (using markdown), visualizations,
and other rich media. The following utility subprojects allow programmatic format conversion and manipulation of
notebook documents.

nbconvert Convert dynamic notebooks to static formats such as HTML, Markdown, LaTeX/PDF, and reStrucured-
Text. Documentation | Repo

nbformat Work with notebook documents programmatically. Documentation | Repo
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3.3.6 IPython

Contents

* Description

* Background

* Resources

Description

IPython provides a rich architecture for interactive computing with:
* A powerful interactive shell.
¢ A kernel for Jupyter.
* Support for interactive data visualization and use of GUI toolkits.
* Flexible, embeddable interpreters to load into your own projects.

* Easy to use, high performance tools for parallel computing.

Background

IPython is a growing project, with increasingly language-agnostic components. IPython 3.x was the last monolithic
release of IPython, containing the notebook server, qtconsole, etc. As of IPython 4.0, the language-agnostic parts of
the project: the notebook format, message protocol, qtconsole, notebook web application, etc. have moved to new
projects under the name Jupyter. IPython itself is focused on interactive Python, part of which is providing a Python
kernel for Jupyter.

Resources

The projects with repos in the IPython organization on GitHub include:
 [Python ipykernel interactive computing in Python.
e ipyparallel lightweight parallel computing in Python offering seamless notebook integration

* ipywidgets interactive widgets for Python in the Jupyter Notebook

3.3.7 Core Building Blocks

The Jupyter architecture relies on these projects’ specifications and implementation.

jupyter_client The specification of the Jupyter message protocol and a client library in Python. Documentation |
Repo

jupyter_core Core functionality and miscellaneous utilities. Documentation | Repo
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3.3.8 Incubator Projects

Contents

* Descriptions

* Try the Incubator Projects

The Jupyter incubator gives emerging projects a place to evolve.

Descriptions

Interesting projects include:
 content management extensions - Jupyter Content Management Extensions
¢ dashboards - Jupyter Dynamic Dashboards from Notebooks
* declarative widgets - Jupyter Declarative Widgets Extension
¢ kernel gateway bundlers - Converts a notebook to a kernel gateway microservice bundle for download
» showcase - A spot to try demos of one or more incubating Jupyter projects in Binder
* sparkmagic - Jupyter magics and kernels for working with remote Spark clusters
e traittypes - Traitlets types for NumPy, SciPy and friends

There’s also a repository with proposals of projects wishing to enter the incubator.
Try the Incubator Projects
The showcase application allows you to try demos of one or more incubating Jupyter projects in Binder. Just head

over to the showcase repo and press the Launch Binder button badge to launch the online trial. You should see an
interactive notebook similar to this one:
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Welcome

This Notebook Server was launched just for you to try demos of projects from the Jupyter Incubation area. It's a temporary sandbox for you to evaluate new
features that may one day land in Jupyter. Poke around and have fun, but please don't rely on this server for anything you want to last: your server will be
deleted after a period of inactivity.

Binder image last updated on 2016-04-29

Declarative Widgets

Take a quick tour in the declarative widgets feature walkthrough. See how to apply declarative widgets to NYC taxi data in the taxi tutcrial. Then browse
through more detailed examples.

View the developer documentation about the Polymer elements and behaviors provided by the declarative widgets.

Visit the jupyter-incubator/declarativewidgets GitHub repo for more information

Dynamic Dashboards

See the Introduction to Dashboards notebook which includes step-by-step instructions for using the dashboard features as well as numerous notebook-to-
dashboard examples.

Visit the jupyter-incubator/dashboards GitHub repo for more information

Content Management
Try these demos which demonstrate reuse of notebooks as modules, notebook search, and notebook bundling.

« Notebooks as Reusable Modules and Cookbooks
« Local File Associations

Visit the jupyter-incubator/contentmanagement GitHub repo for more information

3.3.9 Architecture

This page has information about the different architectural designs of core pieces in the Jupyter ecosystem. Some of
these are individual projects, and others show the relationships between projects.

IPython Kernel

This section focuses on IPython and kernels. When we discuss IPython, we talk about two fundamental roles:
e Terminal [Python as the familiar REPL

¢ The IPython kernel that provides computation and communication with the frontend interfaces, like the notebook
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Terminal IPython

When you type ipython, you get the original IPython interface, running in the terminal. It does something like this:

while True:
code = input (">>> ")
exec (code)

Of course, it’s much more complex, because it has to deal with multi-line code, tab completion using readline,
magic commands, and so on. But the model is like code example: prompt the user for some code, and when they’ve
entered it, execute it in the same process. This model is often called a REPL, or Read-Eval-Print-Loop.

The IPython Kernel

All the other interfaces —- the Notebook, the Qt console, ipython console in the terminal, and third party
interfaces —- use the IPython Kernel. The IPython Kernel is a separate process which is responsible for running user
code, and things like computing possible completions. Frontends, like the notebook or the Qt console, communicate
with the IPython Kernel using JSON messages sent over ZeroMQ sockets; the protocol used between the frontends
and the IPython Kernel is described in Messaging in Jupyter.

The core execution machinery for the kernel is shared with terminal IPython:
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Terminal
IPython

stdin &
stdout

IPython
Kernel

Messages

A kernel process can be connected to more than one frontend simultaneously. In this case, the different frontends will
have access to the same variables.

This design was intended to allow easy development of different frontends based on the same kernel, but it also made
it possible to support new languages in the same frontends, by developing kernels in those languages, and we are
refining IPython to make that more practical.

Today, there are two ways to develop a kernel for another language. Wrapper kernels reuse the communications
machinery from IPython, and implement only the core execution part. Native kernels implement execution and com-
munications in the target language:
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$LANGUAGE
execution
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IPython
JSON, @MQ
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Wrapper
Kernel

Native
Kernel

Wrapper kernels are easier to write quickly for languages that have good Python wrappers, like octave_kernel, or
languages where it’s impractical to implement the communications machinery, like bash_kernel. Native kernels are
likely to be better maintained by the community using them, like [Julia or [Haskell.

See also:
Making kernels for Jupyter

Kernels
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The Jupyter Notebook format

Jupyter Notebooks are structured data that represent your code, metadata, content, and outputs. When saved to disk,
the notebook uses the extension . 1 pynb, and uses a JSON structure. For more information about the notebook format
structure and specification, see the nbformat documentation.

The Jupyter Notebook Interface

Jupyter Notebook and its flexible interface extends the notebook beyond code to visualization, multimedia, collabo-
ration, and more. In addition to running your code, it stores code and output, together with markdown notes, in an
editable document called a notebook. When you save it, this is sent from your browser to the notebook server, which
saves it on disk as a JSON file with a . i pynb extension.

o
=

Notebook | &
| Browser Kernel
4 server

HTTP &
Websockets

Notebook
file

The notebook server, not the kernel, is responsible for saving and loading notebooks, so you can edit notebooks even
if you don’t have the kernel for that language—you just won’t be able to run code. The kernel doesn’t know anything
about the notebook document: it just gets sent cells of code to execute when the user runs them.
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Exporting Jupyter Notebooks to other formats

The Nbconvert tool in Jupyter converts notebook files to other formats, such as HTML, LaTeX, or reStructuredText.
This conversion goes through a series of steps:

XY
o
o ™
ﬁ Preprocessors Exporter
et
O S
=

Postprocessors

Exported
file

1. Preprocessors modify the notebook in memory. E.g. ExecutePreprocessor runs the code in the notebook and
updates the output.

2. An exporter converts the notebook to another file format. Most of the exporters use templates for this.
3. Postprocessors work on the file produced by exporting.

The nbviewer website uses nbconvert with the HTML exporter. When you give it a URL, it fetches the notebook from
that URL, converts it to HTML, and serves that HTML to you.

IPython.parallel

IPython also includes a parallel computing framework, IPython.parallel. This allows you to control many individual
engines, which are an extended version of the IPython kernel described above.

JupyterHub and Binder

JupyterHub is a multi-user Hub that spawns, manages, and proxies multiple instances of the single-user Jupyter note-
book server. This can be used to serve a variety of interfaces and environments, and can be run on many kinds of
infrastructure. JupyterHub on Kubernetes is a Helm Chart for running JupyterHub on kubernetes infrastructure, and
BinderHub is a customized JupyterHub deployment for sharable, reproducible interactive computing environments.

The links below describe the architecture of JupyterHub and several distributions of JupyterHub.
* JupyterHub core architecture
* JupyterHub for Kubernetes architecture

¢ BinderHub architecture
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JupyterLab

JupyterLab is a flexible, extensible interface for interactive computing. Below are a few links that are useful for

understanding the JupyterLab architecture.
¢ JupyterLab document model
* JupyterLab notebook model

* Design patterns in JupyterLab

Projects overview

Below is a high level visual overview of project relationships. It is current as of 2017.
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jupyter averview docs

Notebooks for Notebooks for Notebooks as HTML views of
multiple users multiple users assignments - notebooks on the
with logins with no logins creating and grading web
Servers
Applications
Jupyter terminal Jupyter Qt Jupyter notebook Convert notebook
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application

ipynb file loading, . interactive
saving, format version s, widgets
migration and trust =

jupyter command,
config file handling and .
filesystem locations Messaging

ipywidgets

Kernel .
communication Ipyke el
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Everything
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3.3.10 Project Documentation

Contents

Jupyter User Interfaces

JupyterHub

e Education

Notebook Conversion and Formatting

e Kernels

IPython

* Deployment

JupyterLab

Architecture

Links to information on usage, configuration and development hosted on Read The Docs or in the GitHub project
repo.

Jupyter User Interfaces

* Jupyter Notebook
* jupyter_console

* gtconsole

JupyterHub

e JupyterHub

* configurable-http-proxy
* dockerspawner

* ldapauthenticator

* oauthenticator

* sudospawner

Education

* nbgrader
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Notebook Conversion and Formatting

e nbconvert

¢ nbformat

Kernels

e [Python
¢ JRkernel
e [Julia

e List of community maintained language kernels

IPython

* [Python
* ipykernel
* ipyparallel

Deployment

* docker-stacks

* ipywidgets

* jupyter-drive

* jupyter-sphinx-theme
* kernel_gateway

* nbviewer

* tmpnb

e traitlets

JupyterLab

* jupyter-js-notebook
* jupyter-js-phosphide
* jupyter-js-plugins

* jupyter-js-services
* jupyter-js-ui

* jupyter-js-utils
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Architecture
* jupyter_client
* jupyter_core
3.3.11 Release Notes

When projects release a new version, they often include “release notes” with information about improvements, bug-
fixes, and other changes. These projects are the best source of information about what has recently changed.

Below you’ll find links to the release notes for several major projects in the Jupyter ecosystem.

Jupyter Notebook

You can find a changelog at the Jupyter Notebook documentation.

Jupyter Lab

You can find a changelog at the Jupyter Lab documentation.

JupyterHub

You can find a list of changelogs in the JupyterHub community within the JupyterHub team compass documentation.

3.3.12 Jupyter Projects and Communities

Information relevant to understanding the many projects in the Jupyter ecosystem, including their technical compo-
nents and how they work and relate to one another.

3.3.13 More information
3.4 Community

Welcome to the Community Guides for Jupyter. These guides are intended to provide information about the Jupyter
community such as background, events, and communication channels. As our community is highly dynamic, infor-
mation may change, and we will do our best to keep it up to date.

3.4.1 Community Call Notes

The Jupyter Community Call is an open video call. Think of this as a “monthly, virtual JupyterCon”. It’s a place for
anyone to announce and share fun things happening in the Jupyter community. Everyone is welcome (even if you're
not presenting). We record these videos and post them on YouTube. For more information, read this discourse thread.
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Jupyter Community Call

November 17th, 2020

Date: November 17th, 2020, at 9am Pacific (your timezone)

Discourse
Youtube Link

Please Note:

* Community calls are recorded and posted to this playlist

* These notes will be recorded and posted here

» Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter

community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

¢ Zach Shout out to Isabela for reviving the Jupyter Community Calls :tada:

Agenda ltems

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.

« IPyElk 0.2.0

- Jupyter Widgets for interactive graphs at scale powered by the Eclipse Layout Kernel (ELK),

sprotty, networkx.

e dgaf (deathbeds generalized automation framework)

e Eric What is a Jovyan?

Attendees

Name Institution GitHub Handle
Nick Bollweg Jupyter, Deathbeds, GTRI | @bollwyvl @nrbgt
tony fast @deathbeds

Eric Charles Datalayer, Quansight @echarles

Isabela Presedo-Floyd | Quansight @isabela-pf

Zach Sailer Apple @Zsailer

A. T. Darian Two Sigma @afshin

3.4. Community
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Jupyter Community Call

September 24th, 2019

Date: September 24, 2019, at 9am Pacific (your timezone)
Link: Youtube Video

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).
* Co-locating a Jupyter Server and Dask Scheduler _By Matthew Rocklin [name=tonyfast]
» Language server protocol
— current work on jupyterlab-Isp [name=krassowski]

— wip binder [name=bollwyvl]

Agenda ltems

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.
e importing notebooks with importnb [name=tonyfast]

importnb provides easy, flexible reuse of IPython notebooks from other notebooks, .py scripts
and libraries, and even the command line.

* RobotLab: a one-click Jupyter and Robot Framework environment [name=bollwyvl]

RobotLab was built to support a workshop introducing acceptance-test-driven development and
robot process automation with robotkernel, a Robot Framework kernel, in JupyterLab. It is built with
conda, constructor and azure pipelines. You can use the installers to learn how you can use Robot
Framework and Jupyter, or adapt its pipeline to produce your own, cross-platform installers

* Project Drawdown [name=dgentry]

Project Drawdown is a global research organization that identifies, reviews, and analyzes the most
viable solutions to climate change, and shares these findings with the world. We’ll show current state
of climate solution models using Voila and JupyterHub, and ask for suggestions about git operation
driven from the Notebook.
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Attendees

e Zach | Jupyter Cal Poly | @Zsailer |

* Denton | Project Drawdown | @DentonGentry |

* Nick | GTRI | @nrbgt |

* Chico Venancio | BMC Group K. K. | @chicocvenancio |
 Tony Fast | Quansight | @tonyfast |

* Wayne Decatur | Upstate Medical | @fomightez |

» Kevin Bates | IBM | @kevin-bates |

¢ Carol | Jupyter | @willingc |

Jupyter Community Call

August 27th, 2019

Date: August 27, 2019, at 9am Pacific (your timezone)
Link: Youtube Video

Welcome!

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).
* [x] Tracking Jupyter Newsletter, 22nd edition. Thank you, Tony Hirst!
¢ [x] JupyterLab 1.1.0rc0 is up on PyPI and conda-forge. Please test! JupyterLab 1.1.0 will be released tomorrow.
— pip install —--pre jupyterlab==1.1.0rcOor

— conda install -c conda-forge/label/prerelease-jupyterlab jupyterlab=1.
1.0rcO

¢ [ ] [name=yournamehere]
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Agenda ltems

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.
* [x] [name=Jupyter Cal Poly Intern Team] Rich Text JupyterLab extension
* [x] [name=Jupyter Cal Poly Intern Team] Python Package Installer JupyterLab extension
* [x] [name=Tony Fast] Gist to Binder
https://gist.github.com/Zsailer/6da0dc3c97ec873685b7fe58e52d36d7

People say reproducibility is hard.

User mybinder.org to generate a live notebook from a Gist.

dependencies in requirement.txt lead to a faster build.
¢ [x] [name=Saul Shanabrook] JupyterLab Rich Context Extensions
— [ ] Data registry with HDF5 Viewer

# [ ] It’s meant to make it easier to create new extensions in JupyterLab that deal with different data
formats. If you have a data viewer extension, you shouldn’t care if the data came from a file or from
a notebook output or a database, you just want to be able to render a certain format.

* [ ] Able to visualize HDF5 datasets using this extension too!

— [ ] Metadata/linked data service

Attendees

If you are joining the Jupyter Community Call, sign in below so we know who was here.
e Zach | Jupyter Cal Poly | @Zsailer |
* Derek | Jupyter Cal Poly (Intern) | @dLamSlo8 |
* Isabela | Jupyter Cal Poly (Intern) | @isabela-pf |
* Marisa | Jupyter Cal Poly (Intern) | @marisaaquilina |
* Markelle | Jupyter Cal Poly (Intern) | @markellekelly |
e Javier | Jupyter Cal Poly (Intern) | @javag97 |
* Denton | Project Drawdown | @dgentry |
* Tony | Quansight | @tonyfast |
* Chico Venanciol BMC Group K. K.I @chicocvenanciol
¢ Elizabeth DuPre | McGill University | @emduprel
* Wayne Decatur | Upstate Medical University | @fomightezI
* Saul Shanabrook | Quansight | @saulshanabrook |
* Joe | Mavenomics | @quigleyj-mavenomicsl|
* A.T. Darian | Two Sigma | @afshin |
¢ Erik Sundell | Sandvik | @consideRatio |
» Kevin Bates | IBM | @kevin-bates |
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Jupyter Community Call

June 25th, 2019

Date: June 25th, 2019, at 9am PST (your timezome)
Link Youtube Video

Welcome!

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).
* [ ] [name=willingc] Congrats again to our newest BinderHub/JupyterHub team member, Sarah :tada:
¢ [ ] [name=Zsailer] Welcome the new Jupyter Cal Poly Intern team.

¢ [ ] [name=tgeorgeux] Introduction to Rich Context Work: Metadata, Data Registry, Commenting and Annota-
tion, Real-Time Collaboration, Telemetry.

Data Registry/Explorer

Commenting

Metadata

Telemetry

¢ [ ] [name=Erik Sundell] repo2docker / MyBinder.org support for git repositories with Pipfile / Pipfile.lock com-
ing up soon I hope ;D repo2docker#649

* [ ] [name=yournamehere]

Agenda ltems

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.
* [ ] [name=kbates] Brief overview of Jupyter Enterprise Gateway
— Questions:
% Where can we find information to share with others?
- See this post
— Comments:
+ Add talks to EG docs
+ Check if Docker Stacks has a link to the EG docker stacks
# Add link to this demo to the EG docs
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¢ [ ] [name=dgentry] existing system for git commit+push without requiring a forked repo? Similar to submitting
homework for grading?

nbgrader and hubshare mentioned by Zach

nbstripout / fastai-nbstripout can play a part of making git merges more reasonable

Ask the Jupyter education community

* Jupyter Education Mailing List

Check out solutions from Gigantum, a tech company started out of Johns Hopkins
¢ [ ] [name=YourNameHere]

* [ ] [name=YourNameHere]

Attendees

If you are joining the Jupyter Community Call, sign in below so we know who was here.
e Zach | Jupyter Cal Poly | @Zsailer |
¢ Erik | Sandvik | @consideRatio |
* Denton | individual | @DentonGentry |
e Tim | Jupyter Cal Poly | @tgeorgeux |
* Kevin | IBM | @kevin-bates |
* Wayne | Upstate Medical Universityl @Fomightez |
e Dav | Gigantum | @davclark |
* Mike Trizna | Smithsonian | @MikeTrizna |
¢ Anton Akhmerov | TU Delft | @akhmerov |
* Markelle | Jupyter Cal Poly | |
 Carol | Jupyter | @willingc |
 Saul | Quansight | @saulshanabrook |
* Yair | Mavenomics | @ YairMarcowMavenomics|
* Joe | Mavenomics | @quigleyj-mavenomicsl

¢ Ruixin | Microsoft | @ruixinxu |
Jupyter Community Call
May 28th, 2019

Date: 28 May 2019 at 9am PST (your timezome)
Link: Youtube Video
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Welcome to the All-Jupyter Community Meeting
Purpose

The purpose of these monthly video conference calls is to share and demonstrate the awesome things happening in
Jupyter community. We invite anyone to present their work, engage in discussion, or just sit in and listen. Whether you
have a new lab extension you’ve created, a new jupyterhub deployment you’re excited about, or an nteract papermill
pipeline powering your business, we’d love to hear about it! And, we’ll record and publish these calls on YouTube for
anyone unable to attend.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion). This is also a great place to give
shout-outs to contributors! We’ll read through these at the beginning of the meeting.

* Hello from The Turing Way Book Dash :books::dash::dash: in London. This call is right at the end of a day of 18
people working together to improve the openly developed Jupyter book. Our goal is to make “Reproducibility
too easy not to do” (:laughing::grimacing::scream_cat:), build a strong and supportive community, and give
people the knowledge and confidence they need to contribute to open source projects [name=Kirstie & Turing
Way team]

— GitHub repo: https://github.com/alan-turing-institute/the-turing-way
— The book: https://the-turing-way.netlify.com

— Chat room: https://gitter.im/alan-turing-institute/the-turing-way

Agenda ltems

Add your potential agenda item here 24 hours before the meeting at the latest. We will reorganize the agenda so that
it fits in the 60m meeting slot.

* Feedback and report from Research Software Reactor Sprint [name=Sarah]
— Event website: https://www.microsoftevents.com/profile/form/index.cfm?PKformID=0x6927743abcd

— Project list: https://github.com/research-software-reactor

— New binderhub in the world :baby: :confetti_ball: https://twitter.com/gerardjgorman/status/1131097133292183553

* Feedback and report from Jupyter Server Design and Roadmap workshop [name=Luciano]

sponsored by bloomberg

thomas, kevin, etc.

functionality directions, high-level roadmap

decouple frontend from backend: notebook, lab, nteract, voila

using the backend functionality, providing different Uls

how do we accomplish that? jupyter_server extension points
% ul
* backend

% handlers
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— roadmap
% phase 1: integrating with existing uis (notebookclassic, lab)
* phase 2: expand functionality
- kernel provider pr (e.g. different kernel managers, like Enterprise Kernel Gateway)
* next steps:
- pr from zak
- blog post (illustration)
- biweekly calls
* timeline:
- 6.0 release of notebook?
- post jupyterlab 1.0?

* Qt(5.6)-based PDF output from JupyterLab (0.35) Quick demo of using QtWebEngine to load a notebook in lab
and make a PDF. ,, ;th time’s the charm! |issue | repo | [name=Nick]

Attendees

If you are joining the All-Jupyter Community video meeting, sign in below so we know who was here. Roll call:
e | Zach | Jupyter Cal Poly | @Zsailer |
* | Amit | ReviewNB | @amitlrrr |
* | Kirstie | Alan Turing Institute | @KirstieJane |
* | Pete | Thorn | @parente |
¢ | Tony | Quansight | @tonyfast |
* | Nick | GTRI | @bollwyvl |
* | Luciano | IBM | @Iresende |
e | Sarah | The Alan Turing Institute | @sgibson91 |
¢ | Saul | Quansight | @saulshanabrook |
¢ | James | MUN | @jmunroe |
¢ | Darian | Two Sigma | @afshin |
* | Matthias| UC Merced | @carreau |
* | Tania | Microsoft | @trallard |
e | Carol | Project Jupyter | @willingc |
* | Chris | UNC-Chapel Hill | @cbcunc |
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All-Jupyter Community Video Call - April 2019

Date: 30 April 2019 at 9am PST (your timezome)

Video-conference link: https://calpoly.zoom.us/my/jupyter

Welcome to the Team Meeting

Hello!

The purpose of these monthly video conference calls is to share and demonstrate the awesome things happening in
Jupyter community. We invite anyone to present their work, engage in discussion, or just sit in and listen. Whether you
have a new lab extension you’ve created, a new jupyterhub deployment you’re excited about, or an nteract papermill
pipeline powering your business, we’d love to hear about it! And, we’ll record and publish these calls on YouTube for
anyone unable to attend.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion). This is also a great place to give
shout-outs to contributors! We’ll read through these at the beginning of the meeting.

[x] Shout-out to @GrahamDumpleton for continued well-researched improvements to security (e.g.,
https://github.com/jupyter/docker-stacks/pull/845) [name=Peter Parente]

[x] Some initial work on enabling Jupyter documentation translation is happening in
https://github.com/jupyter/docker-stacks/issues/827. If you would like to contribute a translation, review
one in progress, or help document the process itself, please reach out in the issue. Thanks to @michiboo
(Micky), @Nico769 (Nicola), and @ Allanfs (Allan) for starting translations! [name=Peter Parente]

[x] Work is being done to use BinderHub fully in AWS (hosted docker registry, ECR, and hosted git repository,
CodeCommit are the current areas). [name=Chico Venancio]

[x] JupyterLab 1.0.0a3 has been released since our last call. There are a ton of updates. One thing I specifically
want to give a shout out to is the document search feature that Andrew Schlaepfer built which allows building
custom search functionality for different document types. Install the new version to take it for a spin: pip
install —--pre jupyterlab [name=Darian]

[x] RISE 550 was released, more info about the release in this  blogpost:
http://damianavila.github.io/blog/posts/rise-550-is-out.html [name=Damian]

[x] A big shout-out to Paul Ivanov for helping organize a “Jupyter Open Studio Day” at Bloomberg in SF. Lots
of great people came, shared ideas, learned, and generally celebrated open source stuff! [name=Chris H (but I
won’t be able to attend the meeting)]

[x] (a few quick shout-outs from Chris) Papermill 1.0 is released! Congrats to the nteract community for re-
leasing papermill 1.0, a tool for parametizing / pipelining notebooks. See the Discourse for some more links.
[name=Chris H (but I won’t be able to attend the meeting)]

[x] Many thanks to @KirstieJane and @betatim for improving the contributing documentation in repo2docker
(link to one PR on this) [name=Chris H (but I won’t be able to attend the meeting)]

[x] IPython 7.5 out ! (mostly bugfixes) [name=Matthias, at airport so will stay muted] (Shout out to Matthias
for this too!)

[x] Matthias,Paul,Carol. .. are at PyCon for a tutorial (Thursday), and have Jupyter stickers ! [name=Matthias,
at airport so will stay muted]
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* [ ] add item here [name=add your name]

Agenda ltems

Add your potential agenda item here 24 hours before the meeting at the latest. We will reorganize the agenda so that
it fits in the 60m meeting slot.

* [x] Updates from the nteract project [name=Safia Abdalla]
— New release of the cross-platform nteract desktop app is out.
— papermill v1.0 is released.

* [x] Jupyter at the University of Edinburgh, a walkthrough of the Noteable service [name=James Slack]

Overview of what’s happening at University of Edinburgh
* Large support teams.

* Very open mindset.

http://open.ed.ac.uk/

How Jupyter came to the University
+ Small scale adoption to start
* Students were installing Jupyter on university computers.
* Make Jupyter a shared central service.

# JupyterHub service university wide for use in education.

Pilot phase of Noteable.

6 courses with 6 different schools (~600 students).

+ Political science, art, computer science. . .

Integrated with nbgrader.

Jupyter Commnity Hackathon on NBGrader in Edinburgh.

Questions and comments:
# Connections or interactions with Canadian group? https://syzygy.ca [name=Lindsey Heagy]
% Is this running in the cloud or university server? [name=Anton Akhmerov]
- University server
* Have you explored Binderhub? [name=Chico Vernancio]

- BinderHub now can run  with  “auth” and  persistent  storage, see
https://github.com/jupyterhub/binderhub/issues/794 for more details and a live demo (ask
@betatim if you have more questions)

* [ ] Introducing the rewrite of jupyter-sphinx (example here) and a discussion about markup format in the note-
books (https://github.com/jupyter/nbformat/issues/80) [name=Anton Akhmerov]

— Publishing documents with complex content and computed output.

* Questions/Comments: - [name=matthias (can’t speak)]: I’d love to merge that with ipython built-in sphinx-ext,
/(deprecate sphinx-ext potentially as it’s not well maintained (sphix-ext docs)

e [ ] Quantum Chemistry Database exploration with Jupyter through the QCArchive project, [name=Daniel
Smith].
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— The Molecular Sciences Software Institute
+ NSF funded.

* Designed to serve and enhance software development efforts of broad field of computational molecu-
lar science.

% 8 universities represented on Board of Directors
+ Github org: https://github.com/MolSSI
* https://molssi.org
— QCFractal
— Join our Slack to get involved.
— Questions/comments:
# Is this user created content or hostesd content?
- Completely user created.
k
e [ ]May 13 & 14 W4A Hackathon on Accessibility of JupyterLab

e [ ] Add your item here [name=and your name]

University of Edinburgh materials and contact:

 Contact james.slack@ed.ac.uk

* Noteable - https://noteable.edina.ac.uk/

* Blog https://thinking.is.ed.ac.uk/noteable/
 nbgrader Hackathon - http://edin.ac/2SGmzNu
* Presentation - https://edin.ac/2PBJc1T

In Attendance

Name / Institution / Github Handle
e Zach / Jupyter Cal Poly / @Zsailer
 Pete / Thorn / @parente
 James Slack / University of Edinburgh / @jamesaslack
* Anton Akhmerov / TU Delft / @akhmerov
* Peter Rose / UC San Diego / @pwrose
* A.T. Darian / Two Sigma / @afshin
* Ward Harold / Google / @wkharold
e Damidn Avila// @damianavila
* Chico Venancio / BMC Group K.K. / @chicocvenancio
¢ Eric Lesch / BMC Group K.K. / @FEricLesch

* James Munroe / Memorial University of Newfoundland / @jmunroe

3.4. Community 53


https://github.com/MolSSI/QCFractal
https://join.slack.com/t/qcdb/shared_invite/enQtNDIzNTQ2OTExODk0LWM3OTgxN2ExYTlkMTlkZjA0OTExZDlmNGRlY2M4NWJlNDlkZGQyYWUxOTJmMzc3M2VlYzZjMjgxMDRkYzFmOTE
https://groups.google.com/forum/#%21topic/jupyter/trUVgNj0deU
http://www.bmc-group.co.jp/en/home/
http://www.bmc-group.co.jp/en/home/

Jupyter Documentation, Release 4.1.1 alpha

* Lindsey Heagy / UC Berkeley / @lheagy

* Daniel Smith / The Molecular Sciences Software Institute / @dgasmith
* Michael Milligan / U. Minnesota/MSI / @mbmilligan

* Kevin Bates / IBM / @kevin-bates

* Cindy Wu / experiment.com / @cindywu

* Joe Hamman / NCAR / @jhamman

* Nick Bollweg / GTRI/ @bollwyvl

* Tom Baldwin / Cascade Data Labs / @baldwint

* Pete Blois / Google Colab / @blois

* Ana Ruvalcaba / Cal Poly, San Luis Obispo/Jupyter / @ruv7
* Tim Head / Project Binder / Zurich / @betatim

* Matthias Bussonnier / Jupyter Project / @carreau

* Tim George / Cal Poly, San Luis Obispo/Jupyter / @tgeorgeux

All-Jupyter Community Video Call - March 2019

Date: 26 March 2019 at 9am PST (your timezome)
Video-conference link: https://calpoly.zoom.us/my/jupyter

Link to prior meeting’s virtual meeting report

Welcome to the Team Meeting

Hello!

The purpose of these monthly video conference calls is to share and demonstrate the awesome things happening in
Jupyter community. We invite anyone to present their work, engage in discussion, or just sit in and listen. Whether you
have a new lab extension you’ve created, a new jupyterhub deployment you’re excited about, or an nteract papermill
pipeline powering your business, we’d love to hear about it! And, we’ll record and publish these calls on YouTube for
anyone unable to attend.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion). This is also a great place to give
shout-outs to contributors! We’ll read through these at the beginning of the meeting.

* [x] Shout out to Damian Avila for the second community docker stack: umsimads/education-notebook [Peter
Parente, jupyter/docker-stacks]

* [x] Thank you Tony Hirst for your weekly newsletter Tracking Jupyter [Carol Willing, JupyterHub]

* [x] Thank you to Professor Lorena Barba at GWU for hosting the recent Jupyter team meeting [Carol Willing,
JupyterHub]

* [x] Kudos, Zach Sailer et al, for kicking off the revitalization of this meeting over on the Jupyter Discourse site
[Peter Parente (and everyone in attendance I suspect)]
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* [x] Leave your feedback about our new all-Jupyter community call here
* [x] Come join us on the Jupyter Discourse Forum! (in case you aren’t already tired of me telling you this :-) )
— https://discourse.jupyter.org/t/introduce-yourself/17

— Turn off add blocker if you want to login with google or github.

Agenda ltems

¢ Let’s collect all potential agenda items here before the start of the meeting (closing time 24h before). We will
then attempt to create a coherent agenda that fits in the 60m meeting slot. If there are similar items try and group
them already.

* [x] Suggested demo: docker-stacks project now posts image build manifests back to the GitHub project wiki for
inspection [Peter Parente, https://github.com/jupyter/docker-stacks/wiki, 5 minutes]

¢ [x] Introduction to mybinder.org, how to make a repository ready for running on mybinder.org [Tim Head,
10minutes]

https://mybinder.org/

https://github.com/betatim/my-first-binder

Lots of example repositories: https://github.com/binder-examples/

Not just notebooks: https://github.com/betatim/vscode-binder

Documentation on how to specify dependencies and such https://repo2docker.readthedocs.io/en/latest/

Questions, comments and support: https://discourse.jupyter.org/c/questions

Write questions you have here:
# Is it true that you personally are the only user of https://github.com/Carreau/open-with-binder ?

+ If running an event/tutorial type thing with Binder, how many users should we feel comfortable send-
ing to MyBinder vs setting up our own Z2JH infrastructure?

- By default it prevents more than 100 concurent launches of the same repo. You can ask for more
if you are nice.

- fun fact: apparently the reason this launch was slow is because somebody is teaching
a “learn java” course on Binder just now and a bunch of people connected all at once
https://github.com/santanche/java2learn

% Show the log dashboard :P

- sure thing: https://grafana.mybinder.org/d/fZWsQmnmz/pod-
activity ?refresh=1mé&panelld=1&fullscreen&orgld=1

% We’d love to figure out a funding model for binder
* [x] [10Ominutes ] Update from the nteract team [Safia].

— Version 1.0 of papermill, notebook execution and parameterization library, will be released in early April.
(https://github.com/nteract/papermill)

— Scrapbook, tool for extracting and assembling generated outputs and data from note-
books, known as scraps, will allow you to host scraps remotely on various cloud providers.
(https://github.com/nteract/scrapbook)
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— Plan laid out for version 1.0 of the kernel-relay, a GraphQL API for interfacing with Jupyter kernels.
(https://github.com/nteract/kernel-relay)

— Effort to modularize the Data Explorer, an automatic visualization library, is underway.
— nteract is participating in Google Summer of Code (https://summerofcode.withgoogle.com/organizations/544780765626368(
— Questions:
* How to learn more:
- Nteract slack https://slack.nteract.io/
- Weekly meeting on Monday Afternoon
+* Where is the Data Explorer repo?
* [x] deathbeds stuff [Nick, github.com/deathbeds, Smin].
— lintotype: interactive linting & formatting
— Wwxyz: some crazy widgets
— Questions:
* The SVG messed with my eyes. <3
% Can you expand upon the “cell-id” things?
- cell id in lintotype

- cell id in irobotframework

- ready to be packaged (not yet). Some of the stuff could go into ipywidgets
¢ [x] IPython releases [Matthias, IPython, https://github.com/ipython/ipython, 2min.]
— Trying to do monthly release close to End Of Month.
— 7.4 has been released ! Thanks to everyone.
— If you want to help with 7.5 subscribe to the following issue.
+ https://github.com/ipython/ipython/issues/11657
* [x] Async Kernels startup : [Matthias, Jupyter Client , https://github.com/jupyter/jupyter_client/pull/428, 4min.]
— https://github.com/jupyter/jupyter_client/pull/428
* add item here [name, project name/url, estimated time for discussion].

Don’t get limitted to technical discusions !

In Attendance

Name | Institution | Github Handle

e Zach | Jupyter Cal Poly | @Zsailer

* Kyle | Netflix | @rgbkrk

* Pete | Valassis Digital | @parente

* Carol | Project Jupyter | @willingc (will miss due to OpenEdX conference)
Brian | AWS | @ellisonbg
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* Darian | Two Sigma | @afshin

* Ward | Google | @wkharold

* Tim | Project Jupyter | @betatim

e Chris | Berkeley/Project Jupyterl @choldgraf

* Pete | Google Colab | @blois

* Matthias | UC Merced | @carreau

 Saul | Quansight | @saulshanabrook

* Vidar | Simula Research | @vidartf

* Lindsey Heagy | UC Berkeley | @lheagy

» Safia ABdalla | Microsoft/nteract | @captainsafia
¢ Leticia Portella | - | @leportella

* Damidn Avila | Project Jupyter | @damianavila

¢ Craig Citro | Google Colab | @craigcitro

* Nick Bollweg | GTRI | @bollwyvl

* Michael Milligan | U Minnesota / MSI | @mbmilligan
* Liang Bin Hsueh | InfuseAl | @hlb

* Thomas Vander Velde | - | @tomasdelcampo

* Luciano Resende | IBM | @lresende

 Tony Fast | Quansight | @tonyfast

 James Slack | University of Edinburgh | @jamesaslack
* Erik Sundell | Sandvik | @consideratio

3.4.2 Jupyter Community Meetings

The Jupyter community often meets (usually on-line) in order to discuss matters in the Jupyter community, share new
ideas and discussions, and connect with one another. This often happens within specific sub-project (more information
below), though there are also occasional community-wide meetings.

This following calendar shows the various meetings and events from Jupyter sub-projects:

Jupyter-wide meetings
All-Jupyter Community Calls generally happen on the last Tuesday of the month, and are focused around demon-
strations and sharing information across all of the Jupyter projects.

* Find information on this Discourse thread.

* Watch previous calls on our YouTube channel.

» Read the notes from previous calls.

In addition, you can find the notes from previous community meetings below.
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Jupyter Project meetings

The core developers of various Jupyter sub-projects have regular meetings to discuss and demo what they have been
working on, discuss future plans, and bootstrap conversation. These meetings are public and you are welcome to join
remotely.

Each team has their own processes around logistics and planning for the team meetings. The following pages should
help you find the information for each.

JupyterHub meetings happen monthly. For a calendar of future team meetings, see the JupyterHub team compass
repository.

JupyterLab meetings happen weekly. For more information about when these meetings happen, as well as notes
from each meeting, see the JupyterLab README.

General meeting conversation and planning often happens in the dev-meeting-attendance Gitter channel. We rec-
ommend checking it periodically for new information about when meetings are happening.

3.4.3 Jupyter communications
As a general rule, most project-wide conversation happens in the Jupyter community forum. There are also many other
kinds of communication that happens within the community. See below for links and other relevant information.

* Community forum https://discourse.jupyter.org/

* Blog https://blog.jupyter.org/

* Newsletter https://newsletter.jupyter.org/

* Website https://jupyter.org

o Twitter https://twitter.com/ProjectJupyter

* Gitter https://gitter.im/jupyter/jupyter

* Mailing lists (Jupyter, Jupyter in Education) https://jupyter.org/community.html

3.4.4 Governance

* Steering council: Information about the steering council and its members can be found on the Jupyter website.
¢ Information about Jupyter’s governance process can be found on the Jupyter governance website.

 Jupyter Enhancement Proposal (JEP) process: Details about the process can be found in the enhancement pro-
posals website.

3.4.5 Code of conduct

Information can be found in the Jupyter Code of Conduct page.
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3.4.6 Running Jupyter Events

Members of the Jupyter community often get together to share what they’re working on, to work together, and to teach
and learn from one another.

If you’re organizing an event with the Jupyter community (whether it’s as small as a JupyterDays meetup, or as large as
JupyterCon) you should ensure that the event follows the values and goals of the Jupyter project - to be a place where
everyone feels welcome and supported and that reflects the diversity of developers and users in the Jupyter community.

Shoot for having 25% of your participants come from under-represented groups. If you're organizing a Jupyter
event, here are some resources to help out.

* Mozilla has a number of excellent resources on hosting open events. The Mozilla Open Events guide. This is
an excellent resource for planning and running an open, inclusive event. In particular, this section on making
events more inviting is a good way to make your event more welcoming, interesting, and accessible to the
Jupyter community. Finally, the Diversity and Inclusion wiki includes conference calls related to this topic.

e The NumFocus DISCOVER cookbook is another collection of resources for making your event more productive,
diverse, and inclusive.

* The National Center for Women & Information Technology has an excellent collection of resources for creating
a diverse and inclusive environment. In particular, we recommend their Inclusive Environment Assessment
Guide and 10 actionable ways to actually increase diversity.

* The PyCascades community has several efforts in improving diversity and inclusion.
» Write the Docs has a Welcome Wagon Guide to help first-time attendees feel welcome and included.

Ultimately, making events more inclusive is not rocket science and there is no magic bullet. It requires clear, focused
dedication, planning ahead, and sustained resources and effort over time. However, we believe this effort is worth it!

3.4.7 What is a Jovyan?

You may see the word Jovyan used in Jupyter tools (such as the user ID in the Jupyter Docker stacks or referenced in
conversations. But what is a Jovyan?

In astronomical terms, the word “Jovian” means “like Jupiter”. It describes several planets that share Jupiter-like
properties.

Much like the planet Jupiter and our solar system, the Jupyter community is large, distributed, and nebulous. We like
to use the word Jovyan to describe members of this community. Jovyans are fellow open enthusiasts that use, develop,
promote, teach, learn, and otherwise enjoy tools in Jupyter’s orbit. They make up the Jupyter community. If you’re
not sure whether you’re a Jovyan, you probably are :-)

3.5 Contributing

3.5.1 Getting Started Contributing

Contents

* Major Repos and Issue Types

— Python

— Documentation
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— JavaScript/TypeScript
— DevOps

— Web Development

Welcome fellow contributor! We appreciate your help.

We typically label issues appropriate for new contributors as good first issue or help wanted. To start an
issue, you may comment to let everyone know that you’ll be working on it. Our repos typically provide development
installation instructions in each repo’s CONTRIBUTING.md or README .md. Should you find an issue with our
development installation instructions please let us know in our issues. We want to ensure that our documentation
for development installation is accurate. Additionally, other contributors are often available to answer questions about
fixing the issue on the issue number or on the repo’s gitter channel.

We strive to have a inclusive, welcoming community. Please read our code of conduct to learn more.

Major Repos and Issue Types

Python

IPython, nbgrader, JupyterHub, repo2docker, and Binder are major repos written primarily in Python.
e IPython
— Notable Issues
— Development Installation
— Gitter Channel
* nbgrader
— Notable Issues
— Development Installation
¢ JupyterHub
— Notable Issues
— Development Installation
— Gitter Channel
* repo2docker
— Notable Issues
— Development Installation
— Gitter Channel
* Binder
— Notable Issues
— Development Installation

— Gitter Channel
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Documentation

All our repos have documentation issues that are relevant for new contributors. For example, the source for the
documentation you are reading right now can be found in the jupyter/jupyter repository on GitHub.

JavaScript/TypeScript

Jupyter Notebook, JupyterLab, and IPyWidgets use JavaScript and TypeScript.
* Jupyter Notebook
— Notable Issues
— Development Installation
— Gitter Channel
 JupyterLab
— Notable Issues
— Development Installation
— Gitter Channel
* IPyWidgets
— Notable Issues
— Development Instalation

— Gitter Channel

DevOps

JupyterHub, repo2docker, and Binder have many issues related to devops. See the links above.

Web Development

‘We have issues related to the website.
¢ Project Jupyter’s Website
— Notable Issues

— Developer Installation

3.5.2 Developer Guide

Contents
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How can | help?

Contents

* Submitting Pull Requests
— Contribution Workflow
— Core Developer Workflow

* Submitting a Bug

* Reporting a Vulnerability

Contributing to open source can be a nerve-wrecking process, but don’t worry everyone on the Jupyter team is dedi-
cated to making sure that your open source experience is as fun as possible. At any time during the process described
below, you can reach out to the Jupyter team on Gitter or the mailing list for assistance. If you are nervous about
asking questions in public, you can also reach out to one of the Jupyter developers in private. You can use the public
Gitter to find someone who has the best knowledge about the code you are working with and interact with the in a
personal chat.

As you begin your open source journey, remember that it’s OK if you don’t understand something, it’s OK to make
mistakes, and it’s OK to only contribute a small amount of the code necessary to fix the issue you are tackling. Any
and all help is welcome and any and all people are encouraged to contribute.

Submitting Pull Requests

Individuals are welcome, and encouraged, to submit pull requests and contribute to the Jupyter source. If you are a
first-time contributor looking to get involved with Jupyter, you can use the following query in a GitHub search to find
beginner-friendly issues to tackle across the Jupyter codebase. This query is particularly useful because the Jupyter
codebase is scattered across several repositories within the jupyter organization, as opposed to a single repository. You
can click the link below to find sprint-friendly issues.

is:issue is:open is:sprint-friendly user:jupyter

Once you’ve found an issue that you are eager to solve, you can use the guide below to get started. If you experience
any problems while working on the issue, leave a comment on the issue page in GitHub and someone on the core team
will be able to lend you assistance.

Please keep in mind that what follows are guidelines. If you work through the steps and have questions or run into
time constraints, please submit what you already have worked on as a pull request and ask questions on it. Your effort,
including partial or in-progress work, is appreciated.

1. Fork the repository associated with the issue you are addressing and clone it to a local directory on your machine.

2. cdinto the directory and create a new branch using git checkout -b insert-branch-name-here.
Pick a branch name that gives some insight into what the issue you are fixing is. For example, if you are
updating the text that is logged out by the program when a certain error happens you might name your branch
update-error-text.

3. Refer to the repository’s README and documentation for details on configuring your system for development.

4. Identify the module or class where the code change you will make will reside and leave a comment in the file
describing what issue you are trying to address.

5. Open a pull request to the repository with [WIP ] appended to the front so that the core team is aware that you are
actively pursuing the issue. When creating a pull request, make sure that the title clearly and concisely described
what your code does. For example, we might use the title “Updated error message on ExampleException”. In
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the body of the pull request, make sure that you include the phrase “Closes #issue-number-here”, where the
issue number is the issue number of the issue that you are addressing in this PR.

Feel free to open a PR as early as possible. Getting early feedback on your approach will save you time and
prevent the need for an extensive refactor later.

6. Run the test suite locally in order to ensure that everything is properly configured on your system. Refer to the
repository’s README for information on how to run the test suite. This will typically require that you run the
nosetests command on the commandline. Alternatively, you may submit a pull request. Our Continuous
Integration system will test your code and report test results.

7. Find the test file associated with the module that you will be changing. In the test file, add some tests that outline
what you expect the behavior of the change should be. If we continue with our example of updating the text that
is logged on error, we might write test cases that check to see if the exception raised when you induce the error
contains the appropriate string. When writing test cases, make sure that you test for the following things.

* What is the simplest test case I can write for this issue?
* What will happen if your code is given messy inputs?

* What will happen if your code is given no inputs?

» What will happen if your code is given too few inputs?

* What will happen if your code is given too many inputs?

If you need assistance writing test cases, you can place a comment on the pull request that was opened earlier
and one of the core team members will be able to help you.

8. Go back to the file that you are updating and begin adding the code for your pull request.

9. Run the test suite again to see if your changes have caused any of the test cases to pass. If any of the test cases
have failed, go back to your code and make the updates necessary to have them pass.

10. Once all of your test cases have passed, commit both the test cases and the updated module and push the updates
to the branch on your forked repository.

11. Once you are ready for your pull request to be reviewed, remove the [WIP] tag from the front of issue, a project
reviewer will review your code for quality. You can expect the reviewer to check for the documentation provided
in the changes you made, how thorough the test cases you provided are, and how efficient your code is. Your
reviewer will provide feedback on your code and you will have the chance to edit your code and apply fixes.

12. Once your PR is ready to become a part of the code base, it will be merged by a member of the core team.
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Contribution Workflow

Find an Identify the Write simple test Implement the bug fix
issue to »| relevant section coses to verify that or enhancement in the
of the codebase. your fix or appropriate location.
address. enhancement works,
Reviewer Sobmit a pull request Ron the test svite and
approves and | to the appropriate . . verify that the
merges the repository with your { Test suite posses! I vpdated code works i
Rej Oi ce PR. awesome code! oppropriotely.
ond  |e !
repeat! Test suite fails! |
Y
U Reviewer responds Apply the necessary - y - -
Ju pytgr with changes you »| fies or vpdates to the t‘hi":gi “C”: dzktﬁg "i;”h‘ztsb‘;‘
Contri bUtO r should make to the pUll reqUQSt- cavsing errors. Refer to the [
Workflow PR. moiling list or Gitter channel
for help.

Core Developer Workflow

To help you understand our review process by core developers after you submit a pull request, here’s a guide that
outlines the general process (specifics may vary a bit across our repositories). Here is an example for Jupyter notebook
4.x:

In general, Pull Requests are against master unless they only affect a backport branch. If a PR affects master and
should be backported, the general flow is:

0. mark the PR with milestone for the next backport release (4.3)
1. merge into master
2. backport to 4.x
3. push updated 4.x branch
Backports can be done in a variety of ways, but we have a script for automating the common process to:
1. download the patch * e.g. <https://patch-diff.githubusercontent.com/raw/jupyter/notebook/pull/1645.patch>"
2. checkout the 4.x branch
3. apply the patch
4. make a commit
which works for simple cases, at least.
In this case, it would be:

python /path/to/ipython-repo/tools/backport_pr.py jupyter/notebook 4.x 1645
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Submitting a Bug

While using the Notebook, you might experience a bug that manifests itself in unexpected behavior. If so, we encour-
age you to open issues on GitHub. To make the navigating issues easier for both developers and users, we ask that you
take the following steps before submitting an issue.

1. Search through StackOverflow and existing GitHub issues to ensure that the issue has not already been reported
by another user. If so, provide your input on the existing issue if you think it would be valuable.

2. Prepare a small, self-contained snippet of code that will allow others to reproduce the issue that you are experi-
encing.

3. Prepare information about the environment that you are executing the code in, in order to aid in the debugging of
the issue. You will need to provide information about the Python version, Jupyter version, operating system, and
browser that you are using when submitting bugs. You can alsouse pip list or conda list and grepin
order to identify the versions of the libraries that are relevant to the issue that you are submitting.

4. Prepare a simple test that outlines the expected behavior of the code or a description of the what the expected
behavior should be.

5. Prepare an explanation of why the current behavior is not desired and what it should be.

Reporting a Vulnerability

If you believe you’ve found a security vulnerability in a Jupyter project, please report it to security @ipython.org. If
you prefer to encrypt your security reports, you can use this PGP public key.

Jupyter Enhancement Proposals

Submitting an Enhancement Proposal

While using the Notebook, you might discover opportunities for growth and ideas for useful new features. If so, feel
free to submit an enhancement proposal. The process for submitting enhancements is as follows:

1. Identify the scope of the enhancement. Is it a change that affects only on part of the codebase? Is the enhance-
ment, to the best of your knowledge, fairly trivial to implement? If the scope of the enhancement is small, it
should be be submitted as an issue in the project’s repository. If the scope of your enhancement is large, it
should be submitted to the official Jupyter Enhancement Proposals repository.

2. Prepare a brief write-up of the problem that your enhancement will address.
3. Prepare a brief write-up of the proposed enhancement itself.

4. If the scope of your enhancement (as defined in step 1) is large, then prepare a detailed write-up of how your
enhancement can be potentially implemented.

5. Identify a brief list of the pros and cons associated with implementing the enhancement that you propose.
6. Identify the individuals who might be interested in implementing the enhancement.

7. Depending on the scope of your enhancement, submit it either as an issue to the appropriate repository or as a
Jupyter Enhancement Proposal.
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Basic template for releasing a Jupyter project

Jupyter consists of a bunch of small projects, and a few larger ones. This lays out the basic process of releasing a
smaller project, which should also apply to larger projects, though they may have some added steps.

Milestones

Most Jupyter projects use a GitHub milestone system for marking issues and pull requests in releases. Each release
should have a milestone associated with it. The first step in preparing for a release is to make sure that every issue and
pull request has the right milestone.

1. Go through any open Issues and Pull Requests marked with the current milestone. If there are any, they need
to be resolved or bumped to the next milestone. It’s fine to bump issues - they are typically marked with the
earliest feasible milestone, but many such optimistically marked tasks aren’t complete when it’s time to release.
There’s always next time!

2. Check closed Issues and Pull Requests, using the milestone filter “Issues with no milestone”. There should
never be any closed issues or pull requests without a milestone. If you find any, go through and mark them with
the current milestone or “no action” as appropriate.

A release may be ready to go when it has zero open issues or pull requests.

Release notes

Once all of the issues and pull requests are dealt with, it’s time to make release notes. The smaller projects generally
have a changelog. rst in the docs directory, where you can add a section for the new release. Look through the
pull requests merged for the current milestone (this is why we use milestones), and write a short summary of the
highlights of the changes in this release. There should generally be a link to the milestone itself for more details.

Make a pull requests with these notes. It’s a good idea to cc @willingc for review of this PR. Make sure to mark this
PR with your release’s milestone!

Making the release

Now that your changelog is merged, we can actually build and publish the release. We’ll assume that V has been
declared as a shell variable containing the release version:

export V=5.1.2

Start by making sure you have a clean checkout of master, with no extra files:

git pull
git clean -xfd

First, update the version of the package, often in the file <pkg>/_version.py or similar.

Commit that change:

git commit —am "release S$SV"

Note: At this point, I like to run the tests just to be sure that setting the version didn’t confuse anything.

Build the distributions:
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python setup.py sdist —-—-formats=gztar
python setup.py bdist_wheel

Tag the commit:

git tag —am "release $V" SV

And finally, publish everything, to github and PyPI using twine:

twine upload dist/=*
git push origin
git push origin --tags

We have a release! You can now bump the version to the next ‘.dev’ version, by editing <pkg>/_version.py (or
similar) again, and commit:

git commit —-am "back to dev"
git push origin

Note: The pushes assume that origin points to the main jupyter/ipython repo. Depending how you use git, this could
be upstream or something else.

Whether you are a new contributor or a seasoned developer, we’re pleased that you are working on Jupyter. We hope
you find the Developer Guide is useful. Please suggest changes or ask questions about the contents. Thanks!

If you are interested in installing a specific project from source, each project has documentation on ReadTheDocs.
For example, IPython documentation can be found on ReadTheDocs. Most of our packages can be installed from the
source directory like any other Python package, by running:

pip install

The Jupyter notebook needs some extra pieces to build Javascript components; the information about that is in the
notebook contributor documentation.

3.5.3 Documentation Guide

Contents

Getting started

Contents

* Preparing for your first contribution
* Developing your contribution
— Clone the repository
— Edit the documentation source file

o Testing changes

* Creating a pull request
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* Asking questions I

Preparing for your first contribution

1. Our documentation uses reStructured Text, Markdown, and Jupyter notebooks.
2. We use Sphinx extensively to build documentation.
3. We use Transifex to help translate documentation to multiple languages.

4. We host our documentation on Read the Docs.

Developing your contribution

Jupyter’s documentation is split across several projects, listed on the Jupyter documentation home page. These in-
structions apply to all Jupyter projects, though some projects have further contribution guidelines.

Clone the repository

1. Fork the appropriate project repository on GitHub, depending on which project’s documentation you want to
contribute to.

2. Clone the repository to your system.

Edit the documentation source file

Source files for projects are typically found in the project’s docs/source directory. The reStructured text filenames
end with . rst, and Jupyter notebook files end with . ipynb.

1. In your favorite text editor, make desired changes to the . rst file when working with a reStructured text source
file.

2. If a notebook file requires editing, you will need to install Jupyter notebook according to the Installation docu-
ment. Then, run the Jupyter notebook and edit the desired file. Before saving the Jupyter . ipynb file, please
clear the output cells. Save the file and test your change.

Testing changes

Sphinx should be installed to test your documentation changes. For best results, we recommend that you in-
stall the stable development version Sphinx (pip install git+https://github.com/sphinx-doc/
sphinx@stable) or the current released version of Sphinx (pip install sphinx).

In addition, you may need the following packages: sphinxcontrib-spelling, sphinx_rtd_theme, nbsphinx,
pyenchant, recommonmark 0.4.0 and jupyter_sphinx_theme, which can be installed via pip install
sphinxcontrib-spelling sphinx_rtd_theme nbsphinx pyenchant recommonmark==0.
4.0 Jjupyter_sphinx_theme.

If you are on Linux, you may also need to install the Enchant C library by running sudo apt-get install
enchant.

Once everything is installed, the following commands should be executed using the Terminal/command line from the
docs directory:
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* make html builds a local html version of the documentation. The output message will either display errors or

provide the location of the html documents. For example, the location provided may be build/html and to
view these documents in your browser enter open build/html/index.html.

e make linkcheck will check whether the external links in the documentation are valid or if they are not

longer current (i.e. cause a 500 not found error).

Note: We recommend using Python 3.4+ for building the documentation. If you are editing the documentation, you
can use Python 2.7.9+ or the Github editor.

Creating a pull request

Once you are satisfied with your changes, submit a GitHub pull request, per the instructions above. If the documenta-
tion change is related to an open GitHub issue, please mention the issue number in the pull request message.

A project reviewer will look over your changes and provide feedback or merge your changes into the documentation.

Asking questions

Feel free to ask questions in the Google Group for Jupyter or on an open issue on GitHub.

Understanding our workflow

High level documentation workflow

1.

AN

7.
8.

Identify a documentation change.
* Typos: please go ahead and fix it (or report as a bug).
e Open issues: leave a note in the issue comments that you are working on the issue.

* New documentation: open an issue with your idea or suggestion. We’ll review the issue and work with
you to identify next steps.

Update the source file.
Commit the change.
Test changes locally.
Open a pull request.
Check response of automated tests.
 If tests pass: Nice job. Wait for reviewer feedback and/ or your pull request to be merged.

* If tests show an error: Revise and resubmit your pull request. You do not need to open a new pull request.
If needed, please ask for assistance.

Celebrate your documentation contribution.

Repeat. If you would like suggestions for a new documentation issue to work on, please ask.

Thanks for contributing!
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Tools for documentation

Contents

* Packages
* Source file formats

* Sphinx themes

e Git and Github Resources

Packages

For user documentation, contributor guides, and communications content, we use:
e Sphinx
For developer API documentation (especially for JupyterLab js repos), we use:

* swagger

Source file formats

We use the following input source file formats when developing Sphinx documentation:
e reStructuredText (. rst)
¢ Markdown (. md)
¢ Notebook (. ipynb)

A modern code editor should be used. Many are available including Atom, SublimeText, gedit, vim, emacs. Atom is
a good choice for new contributors.

Sphinx themes

Our projects use the following themes:
* sphinx_rtd_theme (currently used by Jupyter projects)

* jupyter_sphinx_theme (used by ipywidgets)

Git and Github Resources

If this is your first time working with Github or git, you can leverage the following resources to learn about the tools.
e Try Git
* Github Guides
* Git Real
* Git Documentation

¢ Git Rebase
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Setting up a project’s documentation infrastructure
Contents:

Structuring a repo for docs

Root level of the repo

* docs directory : All source files for documentation go here.

e readthedocs.yml : configuration file for readthedocs to build using conda

e0e <[> m * & GitHub, Inc. ¢ ENEED |
jupyter / kernel_gateway ©Watch~ 13 % Star 28 YFork 1
<>Code Issues o Pull requests 1 Wiki Pulse Graphs Settings
Jupyter Kernel Gateway http://jupyter-kernel-g y. — Edit
1) 295 commits. 15 6 branches © 6 releases 12 contributors

Branch: master - [T C0]  Newfile | Uploadfiles Findfile | SSH+ | git@github.con:jupyter/kern [2 | (4] | DownloadZIP

[ Lutiarskatar Merge pull request #152 from parente/port-retries == Latest commit 197ba 10 hours ago
Add retries option to cli doc page aday ago
W etc Add stderr example for development 2 months ago
[ kernel_gateway Optional to retry server port binding aday ago
i scripts Make CLI naming consistent with other jupyter CLIs 6 months ago
B .gitignore Add integration test for cell concat 2 months ago
B travis.yml Enable code coverage report 24 days ago
[E) CHANGELOG.md Correct date of 0.5.0 release 3 days ago
B Dockerfile.dev Use kernel_gateway_docs conda env in container 4 days ago
[E) LICENSE.md Update and rename LICENSE to LICENSE.md 7 months ago
[E) Makefile Use kernel_gateway_docs conda env in container 4 days ago
[E) README.md Badges FTW! 4 days ago
B readthedoc: Update Sphinx version 28 days ago
B setup.cig Better cross platform packaging 3 months ago
[ setup.py Merge pull request #144 from parente/deck-tomado-dep 3 days ago

README.md

Jupyter Kernel Gateway

Inside the docs directory

* source directory : contains all content source files in . rst, .md, or . ipynb
e makefile : used by Sphinx to build the docs

* environment.yml : conda build instructions
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o *

8 GitHub, Inc.

o LY

o This repository  Search

jupyter / kernel_gateway

<> Code Issues o

Pull requests Issues Gist

Pull requests 1 wj Pulse Graphs

Branch: master v | kernel_gateway / docs /

& parente Add retries option to cli doc page

i _static

i source

) Makefile

[ environment.yml

[E) make.bat

[E) requirements.txt

Add initial documentation structure
Add retries option to cli doc page

Add initial documentation structure

Use kernel_gateway_docs conda env in container
Add initial documentation structure

Fix requirements file

©2016 GitHub, Inc. Terms Privacy Security Contact Help

Sphinx

conf.py : Sphinx configuration file

y a-
© Watch~ 13  Star 28 YFork 11
Settings

New file  Upload files = Find file History

Latest commit 892d731 a day ago

amonth ago
aday ago
amonth ago
4 days ago
amonth ago

amonth ago

Status APl Training Shop Blog About

index.rst of contents.rst : Sphinx master table of contents file

_static directory : contains images, drawings, icons

_templates directory: overrides theme templates and layouts

build directory : html files generated by Sphinx (do not check this directory into GitHub)
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Setting up a README
Providing users and developers consistency across repos is a valuable time saver and improves user productivity.

On a larger scope, having the Jupyter name appear prominently in a repo’s README . md file improves the project’s
name awareness.

Recommended elements in Jupyter project repos
Link in repo description

Please include a link to the documentation in the repo’s description.

GitHub This repository  Searc Explore Features Enterprise Pricing Sign in

jupyter / notebook ©Watch 6  #Star 612 YFork 177

<> Code Issues 160 Pull requests 21 Pulse Graphs
Add link to documentation
(usually a link to Read The Docs)

Jupyter Interactive Notebook http://jupyter-notebook.readthedocs.org#

D 8,551 commits P 2 branches © 9releases nﬁ) 198 contributors
S — —)
Branch: master v Find file HTTPS v  https://github.com/jupyter; E 8 Download ZIP
. minrk Merge pull request #923 from anirudhjoshi/master - Latest commit 9bd4a49 7 hours ago

Badges in README

One common way that individuals find documentation is to look for and click on the doc badge that commonly is
found right after the title. Another benefit is an easy visual indication if the docs are not rendering properly.

README.md

Jupyter Notebook

Add badge for Docs

The Jupyter notebook is a web-based notebook environment for interactive computing.

eove i localhost ¢ h

‘examples/Notebook/ Running Code ar

= Ju pyter Running Code Last Checkpoint: 9 hours ago (unsaved changes) A
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Resources section in README

A Resources section at the end of the README . md gives useful links and information to users about the individual
project and the larger Project Jupyter organization. Make sure to include any links to the individual project’s demo
notebooks, if available.

The Resources section includes:

Resources

ipywidgets

e Demo notebook of interactive widgets

e Documentation for ipywidgets [PDF]

e Issues

e Technical support - Jupyter Google Group

Project Jupyter

e Project Jupyter website
e Online Demo of Jupyter Notebook at try.jupyter.org
« Documentation for Project Jupyter [PDF]

Checklist adding docs to a new or existing GitHub Repo

* [ ] Add a link to documentation in repo description (requires GitHub repo privileges)
* [ ] Add badges to README (Edit README . md and submit pull request)
* [ ] Add resources section to README (Edit README . md and submit pull request)

Dated: 1-4-2016 Revised: 1-7-2016

Building automatically on ReadTheDocs

This explains how to automatically rebuild documentation on ReadtheDocs every time a pull request is merged into
its corresponding GitHub repo.

Using the ReadTheDocs service

Webhooks and services can be enabled in GitHub repo settings to allow third party services such as ReadTheDocs.
The ReadTheDocs service rebuilds the project documentation whenever a pull request is merged into the GitHub repo.
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Navigate to Settings

Each GitHub repo has a Settings tab at the far right of the repo menubar. Navigate to Settings and then the Webhooks

& services submenu tab.

ipython / ipywidgets ©@Watch~ 20 s Star 130 YFork 72
Code Issues 43 Pull requests 6 Wiki Pulse Graphs £ Settings
Options Webhooks Add webhook

Collaborators & teams Webhooks allow external services to be notified when certain events happen within your repository. When the specified

Branches events happen, we'll send a POST request to each of the URLs you provide. Learn more in our Webhooks Guide.

We will also send events from this repository to your organization webhooks.
Webhooks & services

. o i P o
Deploy keys v https://webhooks.gitter.im/e/b6060437783c129cf713 (push, issues, issue_com... ) S X

Services Add service v

Available Services

@ read *

Everything you need to build software is now in one place. The directory lists some of the highest quality
integrations made to help you and your team build software better, together.

Browse the directory

Services are pre-built integrations that perform certain actions when events occur on GitHub. For more information on
services check out our service hooks guide.

« Travis Cl #» X

Add the ReadTheDocs service

Select Add service and enter ReadTheDocs in the Available Services input box.

The Services/Add ReadTheDocs window will open. Press the green Add service button to activate the ReadTheDocs

service.
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O This repository Pull requests Issues Gist Q’ +- Ev
ipython / ipywidgets @Watch~ 20 s Star 130 Fork 72
Code Issues 43 Pull requests 6 Wiki Pulse Graphs £} Settings
Options Services / Add ReadTheDocs

Collaborators & teams
Automatically build documentation hosted on readthedocs.org.

Branches
Webhooks & services ¥ Active
We will run this service when an event is triggered.
Deploy keys
Success

The ReadTheDocs service is added successfully. The service will take effect on the next merged pull request to the
project repo.

O This repository Pull requests Issues Gist g’ +. a v
Okay, that hook was successfully created. X
ipython / ipywidgets ®Watch~ 20 JStar 130 YFork 72

Created: 01-07-2016

Supporting translations of documentation

We support and encourage the translation of Jupyter documentation to other languages as one way of making our
community more inclusive and diverse. We are working toward having a consistent model for translation of Sphinx
documentation across Jupyter projects based on prior work in the Python and Django communities. This project
(https://jupyter.readthedocs.io) and the Jupyter Docker Stacks project are early adopters, meant to prove out the work-
flows described on this page.

Overview

After initial project setup, changes to Sphinx documentation and its translations follow a continuous integration (CI)
and continuous deployment (CD), much like project source code.
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Who is involved in translating documentation

Anyone is welcome to participate in writing and translating Jupyter documentation by participating in the workflow
described below. This workflow has a handful of actors and components:

* A person who makes changes to the English project documentation
* A person who translates snippets of text in the English documentations into another language (locale)

 Portable object files (.po) for the source documentation language (e.g., U.S. English, en-US) and for other
locales (e.g., Brazilian Portuguese, pt —BR; Moroccan Arabic, ar—MA)

* A continuous integration system like TravisCI, CircleCI, or GitHub Actions, responsible for

ReadTheDocs, our preferred service for building and hosting documentation

* Transifex, a localization platform with free plans for open source projects, a friendly web interface, and support
for . po files
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The translation process

Continuous
Integration Service

All.md/ .rstU.S en_US .po
English Translation File
Documentation Changes
merge webhook master commit en_US Documentation Site
.md / .rst U.S.
English All.md/ .rstU.s.
Documentation English
Changes Documentation
pull request- merge webho > HTML——]
U.S. English itHi ReadTheDo
Documentation Github oS pt_BR Documentation Site
Contributor
merge webhook pull request

All .po Locale
Translations

<other locale>
Documentation Site

en_us po <locale> .po
Translation File Translation File
Changes Changes

translations

09 0,0 oL
T F0 N

pt_BR it Language <other locale>
Language Team Language
Team Team

1. A user creates or edits reStructuredText (. rst) or Markdown (. md) documents written in U.S. English.
The user submits a pull request on GitHub.

A project maintainer reviews and merges the pull request.

A

ReadTheDocs runs Sphinx to convert U.S. English source documents into HTML (e.g.,
https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html)

5. Meanwhile, the CI service runs Sphinx commands to extract translatable messages from U.S. English documents
into en-US portable object (. po) files. For example:

# 5164fcd91a8ad4700ac734562245773ad
#: ../../source/architecture/how_jupyter_ ipython work.rst:13
#: f68a2lb0bc884dad9021c276e6490e6d

msgid nn
"The IPython kernel that provides computation and communication with the

n

(continues on next page)
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(continued from previous page)

"frontend interfaces, like the notebook"
msgstr ""

1. The CI service commits the English .po files to the project on GitHub. (e.g.,
https://github.com/jupyter/jupyter/commit/1330bc409842d8b8a7bbb3alc63259c34a543be0)

2. Transifex makes the messages in the English . po files available for translation in all configured languages.

3. Over time, translation teams use the Transifex web application to create, review, and update translations for
those languages (e.g., https://docs.transifex.com/translation/translating-with-the-web-editor)

4. Transifex submits a pull request to the GitHub project containing a localized .po file when all
of the English messages have been translated, and optionally reviewed, for a given language (e.g.,
https://github.com/jupyter/jupyter/pull/485). For example:

# 5164fcd91a8ad4700ac734562245773ad

#: ../../source/architecture/how_jupyter_ipython work.rst:13

msgid ""

"The IPython kernel that provides computation and communication with the "
"frontend interfaces, like the notebook"

msgstr ""

"The IPython kernel que fornece o cadlculo e a comunicacdo com as interfaces "
"de frontend como o notebook"

1. A project maintainer reviews and merges the pull request.
2. ReadTheDocs once again runs Sphinx to convert U.S. English source documents into HTML.

3. ReadTheDocs also runs Sphinx to load localized .po files, substitute translations into
the original English text, and convert those translated documents into HTML (e.g.,
https://jupyter.readthedocs.io/pt_BR/latest/architecture/how_jupyter_ipython_work.html)

Note: We recognize this flow assumes documentation starts life written in U.S. English. We should look into removing
this assumption in the future if it becomes a significant barrier to new contributions.

Community translator workflows

We are delighted when members of the Jupyter community want to help translate documentation. We use Transifex to
on-board translators in a friendly web interface without requiring knowledge of git, GitHub, Sphinx, or other software
developer tools.

Creating translations

Getting Started as a Translator is an excellent on-boarding guide for new Transifex users. Follow the instructions to cre-
ate an account. When prompted to join a team, look for jupyter-meta-documentation to start contributing translations
to this documentation site. Alternatively, visit https://www.transifex.com/project-jupyter/jupyter-meta-documentation/
after creating your account and request to join the project. A project maintainer or language team coordinator will
review and approve your request.
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Reviewing translations

Transifex supports Reviewing Translations, peer review by members of a language team, to ensure translation quality.
Project maintainers can choose whether Transifex should immediately send a pull request when translations of all text
in a document are available or delay submitting a pull request until after all of those translations are also reviewed (the
current setting for this project).

Coordinating translation teams

Project maintainers can also grant Transfex team members the role of language coordinator. Language coordinators
have permission to invite users to language teams, approve or deny join requests, assign language team roles, and
perform other administrative actions for a particular project language. Empowering trusted members of the community
as coordinators can help grow translation teams without software developer involvement.

Administrator workflows

The translation CI/CD workflow described above requires configuration in GitHub and in Transifex to function. Project
maintainers can follow the instructions below to enable translations for their Sphinx documentation.

Creating a Transifex organization

Transifex organizes translation projects under organizations that mirror organizations and repositories on
GitHub. At present, only the https://github.com/jupyter organization has a corresponding org on Transifex
(https://www.transifex.com/project-jupyter/public/) with the following organization administrators:

e @choldgraf
e @parente
* @willingc

GitHub users with permissions to install applications in a GitHub org can follow these instructions to create a new
Transifex-GitHub organization link (e.g., for https://github.com/jupyterhub, https://github.com/jupyterlab).

1. Create a new user account at https://transifex.com.
2. Complete the sign-up wizard.

3. Create and name a new organization.

4

. Click the organization drop down in the top right of the Transifex dashboard page and select Organization
Settings.

Click Details in the left sidebar.
Click inviting administrators in the Management section to add additional admins to the Transifex org.
Click Manage integrations in the left sidebar.

Click Install the Transifex app in the GitHub section.

o ® N oW

Select the GitHub organization to associate with the new Transifex organization.
10. Select the repositories that Transifex will have permission to access.
11. Return to the tab where you clicked Install the Transifex app and click authorize Transifex in the GitHub section.

12. Choose the GitHub organization you just configured in the popup dialog.
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Note that you can revise the GitHub-Transifex integration at any time by  visiting
https://github.com/settings/installations.

Creating a Transifex project

Transifex organization administrators can follow the instructions below to configure new translation projects for
GitHub projects in the GitHub org corresponding to the one on Transifex.

1. Visit https://www.transifex.com.
2. Sign in with the appropriate admin user account for the organization.

3. Click the organization drop down in the top right of the Transifex dashboard page and select Organization
Settings.

4. Click Create new project in the lower left sidebar.
5. Name the translation project after the project on GitHub.

6. Select Public as the privacy type, indicate that the project is open source, and provide the GitHub URL for the
repository.

7. Select a file-based project.
8. Create a new team for the project.
9. Select English (en) as the source language.
10. Select known target languages. (You can add these later as well.)
11. Click Create project.
12. Click Settings under the project name in the left sidebar.
13. Click the Maintainers tab.

14. Invite additional project maintainers, typically software developers who will be responsible for maintaining the
continuous integration and bootstrapping language teams.

Configuring languages and teams

Transifex organization admins and project managers can add translation languages to a project.
1. Visit https://www.transifex.com.

Sign in with the appropriate admin user account for the organization.

Click Languages under the project name in the left sidebar.

Click Edit languages.

A

Add or remove target translation languages.
6. Click Apply.

Organization admins, project maintainers, and team managers can add users to translation teams with the roles of
language coordinator, reviewer, or translator.

1. Click Teams in the top nav bar.

2. Click the Invite Collaborators button in the top right.
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3. Enter the username, email address, or full name of a person to add to the project. Note that the autocomplete in
this field does not always display a popup for the user you wish to invite. Confirm you’ve entered the correct
value and move on.

Select the role to assign to the user.
If the role applies to a specific team, select the team.

If the role applies to a specific language, select the language.

N o s

Click Invite more to enter additional users or Send invitation.

Configuring Transifex-GitHub integration

After configuring organization and project resources on Transifex, project developers can:
* configure Sphinx to produce . po files for the source language and read . po files containing translations
* configure Transifex to watch for source language . po file changes

* configure the project CI service to update source language .po files when contributors make changes to the
source documentation

The instructions in this section assume a git repository already contains Sphinx documentation in the following direc-
tory structure:

my-project/

docs/
build/ built sphinx artifacts go here
source/ documentation source is in here
conf.py sphinx config file

index.rst root of the documentation

requirements.txt

HH FH R R H®

sphinx, sphinx—-intl, etc.

Project developers can do the following to configure Sphinx to seed source .po files and recognization translation
.po files.

1. Add sphinx-int1l to your Sphinx project requirements.txt or environment.yaml if it does not
already exist.

2. Run sphinx-intl create-txconfiginthe docs/ directory.

3. Add the following to the Sphinx source/conf . py file.

# —— Translation ————————

gettext_uuid = True
locale_dirs = ["locale/"]

1. Runmake gettext to extract all strings from the English source documentation.

2. Run sphinx-intl update -1 en to generate the English source . po files.

3. Submit, review, and merge a pull request with the changes and generated . po files.
After merging the pull request, link to the Transifex project to the GitHub repository.

1. Visit https://www.transifex.com.

2. Click Settings under the project name in the left sidebar.

3. Click the Integrations tab.
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4. Click Link Repository in the GitHub section.
5. Select the appropriate GitHub repository and integration branch. Then click Next.

6. Copy and paste the following configuration into the dialog, adjusting the commented values as appropriate, and
then click Next.

filters:

- filter type: dir

file format: PO

source_file_extension: po

# Change this if you selected a different source language during project setup
source_language: en

# The path in the GitHub repository where the source .po files reside
source_file dir: "docs/source/locale/en/LC_MESSAGES"

# The path in the GitHub repository where translation .po files reside
translation_files_expression: "docs/source/locale/<lang>/LC_MESSAGES"

1. Select when Transifex will submit translations a back to the repository. Then click Save & Sync.
Click Close.

Watch the sync status progress.

Click Resources in the left sidebar.

Click one of the . po files to see translation progress by language.

AN T

Click one of the languages to see details about translation progress, translate text, and review translations. See
the Translator workflows section above for details.

After confirming the initial English . po files have reached Transifex, set up continuous integration to ensure source
strings are kept up-to-date in Transifex whenever the English documentation changes. The steps to accomplish this
end vary depending on the CI provider. The following describes how what to do when using GitHub Actions.

1. Create a new GitHub actions workflow file . github/workflows/gettext.yml in the project.

2. Add the following content to the file. Note that secrets.GITHUB_TOKEN is a built-in secret, not something
you need to configure ahead of time.

name: Extract Translatable Strings

# Run on all branch pushes
on:
push:

paths:
— "docs/source/x*"
— "l!docs/source/locale/*x"
- ".github/workflows/gettext.yml"

jobs:
gettext:

runs-on: ubuntu-latest
steps:
— name: Checkout Code
uses: actions/checkout@master
— name: Set up Python
uses: actions/setup-python@v2
with:
python-version: "3.x"
- name: Install dependencies

(continues on next page)
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(continued from previous page)

working-directory: docs

run: pip install -r regquirements.txt
- name: Extract source strings

working-directory: docs

run: |

— name: Push to master
# Only commit changes to master if master just changed

if: github.ref == 'refs/heads/master’
uses: mikeal/publish-to-github-action@master
env:

GITHUB_TOKEN: S${{ secrets.GITHUB_TOKEN }}

1.

Submit, review, and merge a pull request containing the workflow YAML.

Once you complete the steps in this section, any changes to the source English documentation on the master branch are
pulled into Transifex for translation. Likewise, any translations completed on Transifex are submitted as pull requests
back to the project on GitHub.

Hosting translations on ReadTheDocs

ReadTheDocs supports building HTML documentation sites from a single GitHub project and its translations. Ad-
ministrators of the source language documentation project on ReadTheDocs can following these instructions to enable
builds for other languages.

1.

10.
11.
12.
13.
14.
15.
16.
17.

© ® =2

Visit https://readthedocs.org/dashboard/

2. Note the name of existing ReadTheDocs project containing your source language (e.g., jupyter).
3. Click Import a Project.

4.
5

Click Import Manually.

. Enter the project name you noted above suffixed with a target language locale (e.g., jupyter-es,

Jupyter—-pt-br).

Enter the GitHub URL of the project.
Check Edit advanced project options.
Click Next.

Select the name of the target language from the Language drop down (e.g. es -> Spanish, es—mx -> Mexican
Spanish, pt —br -> Brazillian Portuguese).

Click Finish.

Return to the list of projects at https://readthedocs.org/dashboard/

Click the project containing the source language.

Click Admin.

Click Translations.

Choose the name of the translation project created in step 5 from the Project drop down.
Click Add.

Repeat these steps for all other languages the project supports.
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Now, any time you merge a pull request from Transifex containing . po translation file updates, ReadTheDocs will
build both the source documentation site as well as sites for all supported languages. ReadTheDocs will associate the
sites with one another and make them accessible via language links in a popup.

" Jupyter

Search the docs ...

Reference

Quickstart Architecture Narratives and Use IPython Using Community Contributors Reference

Cases Jupyter

Jupyter Project Documentation

Welcome to the Jupyter Project documentation. This website acts as “meta” docyl

en es ptBR
It has a collection of resources to navigate the tools and communities in this ecosystd

latest
Start Here
PDF HTML Epub

Jupyter Notebook Quickstart Community

Try the notebook RMTHETELTED s  Project Home Builds Downloads
Architecture Contributor Guig

What is Jupyter? How to contribute to (=
Narratives and Use Cases Release Notes

Narratives of common deployment scenarios New features, upgrad

|Python Reference

An interactive Python kernel and REPL APis

Installation, Configuration, and Usage

https://github.com/parente/helloworld-transifex-rtd is a mini-project configured to support the entire workflow de-
scribed in this document.

This section helps a contributor set up the documentation infrastructure for a new project or an existing project without
Sphinx documentation.

Documentation helps guide new users, fosters communication between developers, and shares tips and best practices

with other community members. That’s why the Jupyter project is focused on documenting new features and to
keeping the documentation up-to-date.

3.5.4 Communications Guide

Contents

* Blog

— Technical overview

— Basic workflow from blog idea to published post

— Creating a draft

# Title and metadata

x Working with images

3.5.
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* Links
— Draft review
* Ask for a review
— Editorial acceptance
* Publishing the post
+* Changing an existing post
- Posts Updates

e Newsletter

o Website

Blog

We publish our blog at https://blog.jupyter.org. We welcome ideas for posts or guest posts to the Jupyter blog. If you
have a suggestion for a future post, please feel free to share your idea with us. We would like to discuss the idea with
you.

Do you enjoy writing? Please contact us about becoming a guest blogger. We can help guide you through the process
of creating a post.

Technical overview

Jupyter’s blog uses the Ghost blog platform for its contributor flexibility and ease of use. Jupyter’s blog is deployed at
https://blog.jupyter.org.

Basic workflow from blog idea to published post

There are several major steps in the workflow from blog idea to a published post including:
* Be inspired to write a post
* Send us a message on the Jupyter mailing list and ask us for an author account on our blog
* Creating a draft
* Draft Review
« Editorial acceptance
* Publishing the post

We’ll cover each of these as well as how to update a post once it has been published.

86 Chapter 3. Table of Contents


https://blog.jupyter.org
https://blog.jupyter.org

Jupyter Documentation, Release 4.1.1 alpha

Creating a draft
Title and metadata

Alway check in the metadata fields that a blog post has a title and a canonical URL. It is possible to put the date in the
canonical URL, in particular for events like jupyter-day, that can occur several times. The date of the event can differ
from the date of the blog post.

Once a post is published, never change the post’s title or the url. These changes will break links of tweets and RSS
feeds that have already referenced the existing, published URL. Keep in mind that when publishing some platforms
cache the url immediately; as a result changing the title will direct people to a 404 page.

Title and metadata can always be refined after the actual content of the blog is written, but should not be changed after
publication. As a guest you do not have to worry about metadata, the editor or admins will take care of that.

Working with images

Try not to link to external images. If you want to put an image in the post, insert ! [] () in the editor view and drag
and drop an image from your desktop into the newly created field in the preview. External images can change, and
can break the blog post if they are taken down. This cannot append if you drag and drop images. Moreover, these
images will be served from the same CDN (Content Delivery Network) as the blog, which will insure the best overall
experience for our readers.

The featured image you see at the top of a blog posts is set from within the metadata field, not using the /[](). The
featured image is treated differently than inlined images by many feedreaders (especially on mobile) and allows a user
on a slow connection to read the content of the blog earlier, which is a much better experience for the user than waiting
for the featured image to render.

Links

Do not use minified links when possible. The multiple redirects of minified links degrades the mobile browsing
experience. If you need analytics of the number of page views, this information is tracked by Google Analytics.

Draft review
Ask for a review

Once you think you are done, ask someone else to reread your post, and check the various parameters that you might
have forgotten before publishing. You are not on your own, this is teamwork, we are here to help you. If we do things
in a hurry you will probably spend more time fixing mistakes that actually doing things right in a first place.
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Editorial acceptance
Publishing the post

Usually an editor or admin will take care of publishing the post. The task of the Editor/Admin is to check all metadata
are correctly set, that no external images are used, as well as all other quality check describe before.

It is then just a matter of making th post visible to everyone.

Changing an existing post
Posts Updates

Blog subscribers may receive notification at every update. So use updates and fixes parsimoniously. It is OK to wait a
few hours to fix a typo.

If some substantial updates have to be made, like change of location, time etc, please insert an [Update] section at top
(or bottom of the blog post depending on importance) with the Date/Time of the update. If the information in the body
of the blog is wrong, try not to replace it, and just use strike-through to mark it as obsolete. This would help reader
determine which information is correct when dealing with multiple source giving different informations.

Newsletter

Documentation in progress.

Website

Documentation in progress.

3.5.5 IPython Development Guide (source: old IPython wiki)

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

IPython does all of its development using GitHub. All of our development information is hosted on this GitHub wiki.
This page indexes all of that information. Developers interested in getting involved with IPython development should
start here.

IPython on GitHub

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

Notes on working with GitHub
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Milestones

100% of confirmed issues should have a milestone.

An issue should never be closed without a milestone.

All pull requests should have a milestone.

All issues closed should be marked with the next release milestone, next backport milestone, or no action.

Open issues should only lack a milestone if:

more clarification is required (label: needs—info)

In general, there will be four milestones with open issues:

next minor release. This milestone contains issues that should be backported for the next minor release.
See below for information on backporting.

next major release. This should be the default milestone of all issues. As the release approaches, issues
can be explicitly bumped to next release + 1.

next major release + 1. Only issues that we are confident will not be included in the next release go here.
This milestone should be mostly empty until relatively close to release.

wishlist. This is the milestone for issues that we have no immediate plans to address.

¢ The remaining milestone is no action for open or closed issues that require no action:

Not actually an issue (e.g. questions, discussion, etc.)
Duplicate of an existing Issue
Closed because we won’t fix it

When an issue is closed with no action, it means that the issue will not be fixed, or it was not an issue at
all.

* When closing an issue, it should always have one of these milestones:

next minor release because the issue has been addressed
next major release because the issue has been addressed

no action because the issue will not be addressed, or it is a duplicate/non-issue.

In general: When in doubt, mark with next release. We can always push back when we get closer to a given release.

Labels and issues

Issues should always be labeled once they are confirmed (not necessary for issues that are still being clarified, or may
be duplicates or not issues at all).

Some significant labels:

* needs-info: issue needs more information from submitter before progress can be made

bug: errors are raised, or unintended behavior occurs

enhancement: improvements that are not bugs

backport-X.Y.Z: Any fix for this issue should be backported to the maintenance branch. backports are expressed
with milestones, starting with 2.1.

prio-foo: a priority level for ranking issues - nonessential, but prio-high/low are useful for explicitly pro-
moting/demoting issues, particularly when nearing release.
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* ClosedPR: This issue is a reminder for a PR that was closed for going stale.
e sprint—-friendly: Obvious or easy fixes, where

All confirmed issues should at least have a bug or enhancement label, and be marked with any affected components
(e.gparallel, gtconsole, htmlnotebook), or particular sources of error (e.g. py 3k or unicode) if we have
appropriate labels.

The sprint-friendly label is probably the best place for new contributors to start.

Pull Requests

» All work is submitted via Pull Requests.

* Pull Requests can be submitted as soon as there is code worth discussing. Pull Requests track the branch, so
you can continue to work after the PR is submitted. Review and discussion can begin well before the work is
complete, and the more discussion the better. The worst case is that the PR is closed.

 Pull Requests that have stalled should be closed (see [[our policy on closing PRs|Dev: Closing Pull Requests]])
 Pull Requests should always be made against master (backporting PRs is described below).
* Pull Requests should be tested, if feasible:

— bugfixes should include regression tests

— new behavior should at least get minimal exercise

Travis does a pretty good job testing IPython and Pull Requests, but it may make sense to manually perform tests
(possibly with our test_pr script), particularly for PRs that affect IPython.parallel or Windows.

Opening an Issue

When opening a new issue, please take the following steps:

1. Search GitHub and/or Google for your issue to avoid duplicate reports. Keyword searches for your error mes-
sages are most helpful.

2. If possible, try updating to master and reproducing your issue, because we may have already fixed it.
3. Try to include a minimal reproducible test case

4. Include relevant system information. Start with the output of:

python -c¢ "import IPython; print (IPython.sys_info())"

And include any relevant package versions, depending on the issue, such as matplotlib, numpy, Qt, Qt bindings
(PyQt/PySide), tornado, web browser, etc.
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Backporting

* We should keep an A . x maintenance branch for backporting fixes from master.

That branch shall be called A. x, e.g. 2. %, not 2. 1. This way, there is only one maintenance branch per release
series.

* When an Issue is determined to be appropriate for backporting, it should be marked with the A . B milestone.
¢ Any Pull Request which addresses a backport issue should also receive the same milestone.

* Patches are backported to the maintenance branch by applying the pull request patch to the maintenance branch
(currently with the backport_pr script).

The Perfect Pull Request

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

A brief guide to making and reviewing pull requests.

1. It works

The code does what it’s supposed to!

2. It works on all of the platforms that IPython officially supports

[Python has to work on:
¢ Linux of various kinds, Windows & Mac

e Python2 & 3

3. Handles unicode issues properly

Much of our code base deals with strings and unicode. This needs to be done in a manner that is unicode aware
and works on Python 2 and 3. [This article] (http://www.joelonsoftware.com/articles/Unicode.html) is a good intro to
unicode.

4. Adheres to our coding style

Coding style refers to how source code is formatted and how variables, functions, methods and classes are named.
Your code should follow our coding style, which is described [[herelDev: Coding style]].
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5. Clean & commented

The code should be well organized, and have inline comments where appropriate. When we look at the code, it should
be clear what it’s doing and why. It should not break abstractions that we have established in the project.

6. Tested

If it fixes a bug, the pull request should ideally add an automated test that fails without the fix, and passes with it.
Normally it should be sufficient to copy an existing test and tweak it. New functionality should come with its own
tests as well. Details about testing IPython can be found [[herelDev: Testing]].

7. Well documented

Don’t forget to update docstrings, and any relevant parts of the official documentation. New features or significant
changes warrant an entry in the What’s New section too. Details about documenting IPython can be found [[herelDev:
Documenting IPython]].

Coding Style

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

This document describes our coding style. Coding style refers to the following:
* How source code is formatted (indentation, spacing, etc.)

* How things are named (variables, functions, classes, modules, etc.)

General coding conventions

In general, we follow the standard Python style conventions as described in Python’s PEP 8, the official Python Style
Guide.

Other general comments:

* In a large file, top level classes and functions should be separated by 2 lines to make it easier to separate them
visually.

» Use 4 spaces for indentation, never use hard tabs.

» Keep the ordering of methods the same in classes that have the same methods. This is particularly true for
classes that implement similar interfaces and for interfaces that are similar.
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Naming conventions

For naming conventions, we also follow the guidelines of PEP 8. Some of the existing code doesn’t honor this
perfectly, but for all new and refactored IPython code, we’ll use:

All lowercase module names. Long module names can have words separated by underscores
(really_long_module_name.py), but this is not required. Try to use the convention of nearby files.

CamelCase for class names.
lowercase_with_underscores for methods, functions, variables and attributes.

Implementation-specific private methods will use _single_underscore_prefix. Names with a leading
double underscore will only be used in special cases, as they makes subclassing difficult (such names are not
easily seen by child classes).

Occasionally some run-in lowercase names are used, but mostly for very short names or where we are imple-
menting methods very similar to existing ones in a base class (like runlines () where runsource () and
runcode () had established precedent).

The old IPython codebase has a big mix of classes and modules prefixed with an explicit IP of ip. This is
not necessary and all new code should not use this prefix. The only case where this approach is justified is for
classes or functions which are expected to be imported into external namespaces and a very generic name (like
Shell) that is likely to clash with something else. However, if a prefix seems absolutely necessary the more
specific IPY or ipy are preferred.

All JavaScript code should follow these naming conventions as well.

Attribute declarations for objects

In general, objects should declare, in their class, all attributes the object is meant to hold throughout its life. While
Python allows you to add an attribute to an instance at any point in time, this makes the code harder to read and
requires methods to constantly use checks with hasattr() or try/except calls. By declaring all attributes of the object in
the class header, there is a single place one can refer to for understanding the object’s data interface, where comments
can explain the role of each variable and when possible, sensible defaults can be assigned.

If an attribute is meant to contain a mutable object, it should be set to None in the class and its mutable value should be
set in the object’s constructor. Since class attributes are shared by all instances, failure to do this can lead to difficult to
track bugs. But you should still set it in the class declaration so the interface specification is complete and documented
in one place.

A simple example:

class Foo (object) :

# X does..., sensible default given:

x =1

# y does..., default will be set by constructor

y = None

# z starts as an empty list, must be set in constructor
z = None

def _ init__ (self, vy):
self.y =y
self.z = []
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New files

When starting a new Python file for IPython, you can use the following template as a starting point that has a few
common things pre-written for you.

Documenting IPython

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

When contributing code to IPython, you should strive for clarity and consistency, without falling prey to a style
straitjacket. Basically, ‘document everything, try to be consistent, do what makes sense.’

By and large we follow existing Python practices in major projects like Python itself or NumPy, this document provides
some additional detail for IPython.

Standalone documentation

All standalone documentation should be written in plain text (. t xt) files using reStructuredText [reStructuredText]_
for markup and formatting. All such documentation should be placed in the directory docs/source of the IPython
source tree. Or, when appropriate, a suitably named subdirectory should be used. The documentation in this location
will serve as the main source for IPython documentation.

The actual HTML and PDF docs are built using the Sphinx [Sphinx]_ documentation generation tool. Once you have
Sphinx installed, you can build the html docs yourself by doing:

$ cd ipython-mybranch/docs
$ make html

Our usage of Sphinx follows that of matplotlib [Matplotlib]_ closely. We are using a number of Sphinx tools and
extensions written by the matplotlib team and will mostly follow their conventions, which are nicely spelled out
in their documentation guide [MatplotlibDocGuide]_. What follows is thus a abridged version of the matplotlib
documentation guide, taken with permission from the matplotlib team.

If you are reading this in a web browser, you can click on the “Show Source” link to see the original reStrictured Text
for the following examples.

A bit of Python code:

for i in range (10):
print i,
print "A big number:",2x%x34

An interactive Python session:

>>> from IPython.utils.path import get_ipython_dir
>>> get_ipython_dir ()
' /home/fperez/.config/ipython'

An IPython session:
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In [7]: import IPython

In [8]: print "This IPython is version:",IPython.__version_
This IPython is version: 0.9.1

In [9]: 2+4
Oout[9]: 6

A bit of shell code:

cd /tmp
echo "My home directory is: SHOME"
1s

Docstring format

Good docstrings are very important. Unfortunately, Python itself only provides a rather loose standard for docstrings
[PEP257]_, and there is no universally accepted convention for all the different parts of a complete docstring. However,
the NumPy project has established a very reasonable standard, and has developed some tools to support the smooth
inclusion of such docstrings in Sphinx-generated manuals. Rather than inventing yet another pseudo-standard, [Python
will be henceforth documented using the NumPy conventions; we carry copies of some of the NumPy support tools to
remain self-contained, but share back upstream with NumPy any improvements or fixes we may make to the tools.

The NumPy documentation guidelines [NumPyDocGuide]_ contain detailed information on this standard, and for a
quick overview, the NumPy example docstring [NumPyExampleDocstring]_ is a useful read.

For user-facing APIs, we try to be fairly strict about following the above standards (even though they mean more
verbose and detailed docstrings). Wherever you can reasonably expect people to do introspection with:

In [1]: some_function?

the docstring should follow the NumPy style and be fairly detailed.

For purely internal methods that are only likely to be read by others extending IPython itself we are a bit more relaxed,
especially for small/short methods and functions whose intent is reasonably obvious. We still expect docstrings to be
written, but they can be simpler. For very short functions with a single-line docstring you can use something like:

def add(a, b):
"""The sum of two numbers.

mon

code

and for longer multiline strings:

def add(a, b):
""n"The sum of two numbers.

Here is the rest of the docs.

mmwn

code

Here are two additional PEPs of interest regarding documentation of code. While both of these were rejected, the ideas
therein form much of the basis of docutils (the machinery to process reStructuredText):

* Docstring Processing System Framework

* Docutils Design Specification
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note

In the past IPython used epydoc so currently many docstrings still use epydoc conventions. We will
update them as we go, but all new code should be documented using the NumPy standard.

Building and uploading

The built docs are stored in a separate repository. Through some github magic, they’re automatically exposed as a
website. It works like this:

* You will need to have sphinx and latex installed. In Ubuntu, install texlive-latex—-recommended

texlive-latex—extra texlive-fonts-recommended. Install the latest version of sphinx from
PyPl (pip install sphinx).

* Ensure that the development version of IPython is the first in your system path. You can either use a virtualenv,

or modify your PYTHONPATH.

» Switch into the docs directory, and run make gh-pages. This will build your updated docs as html and pdf,

then automatically check out the latest version of the docs repository, copy the built docs into it, and commit
your changes.

¢ Open the built docs in a web browser, and check that they’re as expected.

* (When building the docs for a new tagged release, you will have to add its link to index.rst, then run python

build_index.py to update index.html. Commit the change.)
* Upload the docs with git push. This only works if you have write access to the docs repository.

* If you are building a version that is not the current dev branch, nor a tagged release, then you must run gh-
pages.py directly with python gh-pages.py <version>, and not withmake gh-pages.

Lab Meetings on Air

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

Academic labs have long had the tradition of the weekly lab meeting, where all topics of interest to the lab are
discussed. IPython has strong roots in academia, but it is also an open source project that needs to engage an active
international community. So while our goal with IPython is not to publish the next paper, we’ve been thinking about
the value these regular discussions bring to how teams work on sustained efforts involving difficult problems, and
wanted to bring that bit of academic practice into the open source workflow. So we have decided to conduct weekly
“lab meetings” for IPython, that will be held publicly using a Google Hangout on Air.

Logistics

We are trying to keep things simple and with a minimum of new moving parts:

* Meetings happen on Tuesdays at 10am California time (i.e. UTC-8 or -7 depending on the time of year).
* We broadcast the meeting as it happens via G+ and leave the public YouTube link afterwards.
* During the meeting, all chat that needs to happen by typing can be done on our Gitter chat room.

* We keep a running document with minutes of the meeting on HackPad where we summarize main points. (2015
part 1)
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We welcome and encourage help from others in updating these minutes during the meeting, but we’ll make no major
effort in ensuring that they are a detailed and accurate record of the whole discussion. We simply don’t have the time
for that.

Prior meetings

You can find a list of the videos on the ipythondev YouTube user page.

Policy on Closing Pull Requests

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

IPython has the following policy on closing pull requests. The goal of this policy is to keep our pull request queue
small and allow us to focus on code that is being actively developed and has a strong chance of being merged in master
soon.

A pull request will be closed when:

* It has been reviewed, but has sat for a month or more waiting for the submitter to commit more code to address
the comments.

¢ The review process has uncovered larger design or technical issues that extend beyond the details of the specific
pull request.

— In particular, we do not accept whole large “cleanup” changes which do not address any specific bug. This
includes trailing whitespace, PEPS8, etc. One of the reasons is that such massive cleanup provide plenty of
opportunities to introduce new and subtle bugs.

In general we will not close pull requests because of a lack of review. If a pull request has sat for a month or more
without review, we need to kick ourselves and get to reviewing it.

When a pull request is closed we will do the following:

* Post a github message to the pull request to confirm that everyone is fine with closing the pull request. This
message should cite this policy.

* Open an issue to track the pull request. This issue should describe what would be needed in order to reopen the
pull request.

* Post a github message to the pull request encouraging the submitter to continue with the work and detail what
issues need to be addressed in order for the pull request to be reopened.

This policy was discussed in the following thread:

https://mail.scipy.org/pipermail/ipython-dev/2012- August/010025.html
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Example Message:

Hi,

This PR has been inactive for 1 month now, so we are going to close it and open an
issue to reference it. We try to keep our pull request queue small and focused on
active work. We encourage you to reopen the pull request if and when you

continue to work on this. Please contact us if you have any questions.

Thanks for contributing.

see https://github.com/ipython/ipython/wiki/Dev%3A-Closing-pull-requests/ for
our policies on closing pull requests.

Testing IPython for users and developers

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

Overview

It is extremely important that all code contributed to IPython has tests. Tests should be written as unittests, doctests or
other entities that the IPython test system can detect. See below for more details on this.

Each subpackage in IPython should have its own tests directory that contains all of the tests for that subpackage.
All of the files in the tests directory should have the word “tests” in them to enable the testing framework to find
them.

In docstrings, examples (either using IPython prompts like In [1] : or ‘classic’ python >>> ones) can and should
be included. The testing system will detect them as doctests and will run them; it offers control to skip parts or all of
a specific doctest if the example is meant to be informative but shows non-reproducible information (like filesystem
data).

If a subpackage has any dependencies beyond the Python standard library, the tests for that subpackage should be
skipped if the dependencies are not found. This is very important so users don’t get tests failing simply because they
don’t have dependencies.

The testing system we use is an extension of the nose test runner. In particular we’ve developed a nose plugin that
allows us to paste verbatim IPython sessions and test them as doctests, which is extremely important for us.

Running the test suite

You can run IPython from the source download directory without even installing it system-wide or having configure
anything, by typing at the terminal:

’pythonZ —-c "import IPython; IPython.start_ipython();"

To start the webbased notebook you can use:

’pythonZ —-c "import IPython; IPython.start_ipython(['notebook']);"

In order to run the test suite, you must at least be able to import IPython, even if you haven’t fully installed the
user-facing scripts yet (common in a development environment). You can then run the tests with:
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’python —-c "import IPython; IPython.test ()"

Once you have installed IPython either via a full install or using:

’python setup.py develop

you will have available a system-wide script called iptest that runs the full test suite. You can then run the suite
with:

’iptest [args]

By default, this excludes the relatively slow tests for IPython.parallel. Torun these, use iptest --all.

Please note that the iptest tool will run tests against the code imported by the Python interpreter. If the command
python setup.py symlink has been previously run then this will always be the test code in the local directory
via a symlink. However, if this command has not been run for the version of Python being tested, there is the possibility
that iptest will run the tests against an installed version of IPython.

Regardless of how you run things, you should eventually see something like:

R I i B I I e i S S b I I S b I S b I b I S R I S S S S b S b e S R e S b S b S b 2

Test suite completed for system with the following information:

{'commit_hash': 'l44fdae'’',
'commit_source': 'repository',
'ipython_path': '/home/fperez/usr/lib/python2.6/site-packages/IPython',
'ipython_version': '0.11l.dev’',
'os_name': 'posix',
'platform': 'Linux—-2.6.35-22-generic-1i686-with-Ubuntu-10.10-maverick',
'sys_executable': '/usr/bin/python’',
'sys_platform': 'linux2',
'sys_version': '2.6.6 (r266:84292, Sep 15 2010, 15:52:39) \n[GCC 4.4.5]"'}

Tools and libraries available at test time:
curses matplotlib pymongo gt sglite3 tornado wx wx.aul zmg

Ran 9 test groups in 67.213s

Status:
OK

If not, there will be a message indicating which test group failed and how to rerun that group individually. For example,
this tests the ITPython.utils subpackage, the —v option shows progress indicators:

$ iptest IPython.utils —- -v

Ran 125 tests in 0.119s

OK (SKIP=7)

Because the [Python test machinery is based on nose, you can use all nose syntax. Options after —— are passed to nose.
For example, this lets you run the specific test test__rehashx inside the test_magic module:

$ iptest IPython.core.tests.test_magic:test_rehashx —-- -vv
IPython.core.tests.test_magic.test_rehashx (True,) ... ok
IPython.core.tests.test_magic.test_rehashx (True,) ... ok

(continues on next page)
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(continued from previous page)

Ran 2 tests in 0.100s

OK

When developing, the ——pdb and ——pdb—-failures of nose are particularly useful, these drop you into an interac-
tive pdb session at the point of the error or failure respectively: iptest mymodule -- —-pdb.

The system information summary printed above is accessible from the top level package. If you encounter a problem
with IPython, it’s useful to include this information when reporting on the mailing list; use:

code:: python

from IPython import sys_info print sys_info()

and include the resulting information in your query.

Testing pull requests

We have a script that fetches a pull request from Github, merges it with master, and runs the test suite on different
versions of Python. This uses a separate copy of the repository, so you can keep working on the code while it runs. To
run it:

python tools/test_pr.py -p 1234

The number is the pull request number from Github; the —p flag makes it post the results to a comment on the pull
request. Any further arguments are passed to iptest.

This requires the requests and keyring packages.

For developers: writing tests

By now IPython has a reasonable test suite, so the best way to see what’s available is to look at the t est s directory
in most subpackages. But here are a few pointers to make the process easier.

Main tools: IPython.testing

The IPython.testing package is where all of the machinery to test IPython (rather than the tests for its various
parts) lives. In particular, the iptest module in there has all the smarts to control the test process. In there, the
make_exclude function is used to build a blacklist of exclusions, these are modules that do not get even imported
for tests. This is important so that things that would fail to even import because of missing dependencies don’t give
errors to end users, as we stated above.

The decorators module contains a lot of useful decorators, especially useful to mark individual tests that should
be skipped under certain conditions (rather than blacklisting the package altogether because of a missing major depen-
dency).
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Our nose plugin for doctests

The plugin subpackage in testing contains a nose plugin called ipdoctest that teaches nose about IPython syntax,
so you can write doctests with IPython prompts. You can also mark doctest output with # random for the output
corresponding to a single input to be ignored (stronger than using ellipsis and useful to keep it as an example). If
you want the entire docstring to be executed but none of the output from any input to be checked, you can use the #
all-random marker. The IPython.testing.plugin.dtexample module contains examples of how to use
these; for reference here is how to use # random:

def ranfunc():
"""A function with some random output.

Normal examples are verified as usual:
>>> 1+3
4

But if you put '# random' in the output, it is ignored:
>>> 143
junk goes here... # random

>>> 1+2
again, anything goes #random
if multiline, the random mark is only needed once.

>>> 142
You can also put the random marker at the end:
# random

>>> 142
# random
or at the beginning.

More correct input 1is properly verified:
>>> ranfunc ()
'"ranfunc’

mwn

return 'ranfunc'

and an example of # all-random:

def random_all():
"""A function where we ignore the output of ALL examples.

Examples:
# all-random
This mark tells the testing machinery that all subsequent examples
should be treated as random (ignoring their output). They are still
executed, so i1f a they raise an error, it will be detected as such,

but their output is completely ignored.

>>> 143
junk goes here...

>>> 143
klasdfij;

(continues on next page)
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In [8]: print 'hello'
world # random

In [9]: iprand()
Out[9]: 'iprand'

mwn

return 'iprand'

When writing docstrings, you can use the @skip_doctest decorator to indicate that a docstring should not be
treated as a doctest at all. The difference between # all-randomand @skip_doctest isthat the former executes
the example but ignores output, while the latter doesn’t execute any code. @skip_doctest should be used for
docstrings whose examples are purely informational.

If a given docstring fails under certain conditions but otherwise is a good doctest, you can use code like the following,
that relies on the ‘null’ decorator to leave the docstring intact where it works as a test:

# The docstring for full path doctests differently on win32 (different path
# separator) so just skip the doctest there, and use a null decorator
# elsewhere:

doctest_deco = dec.skip_doctest if sys.platform == 'win32' else dec.null_deco
@doctest_deco
def full_path(startPath,files):

"""Make full paths for all the listed files, based on startPath..."""

# function body follows...

With our nose plugin that understands [Python syntax, an extremely effective way to write tests is to simply copy and
paste an interactive session into a docstring. You can writing this type of test, where your docstring is meant only as a
test, by prefixing the function name with doctest_ and leaving its body absolutely empty other than the docstring.
In IPython.core.tests.test_magic you can find several examples of this, but for completeness sake, your
code should look like this (a simple case):

def doctest_time() :

mmn

In [10]: %$time None

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s

mown

This function is only analyzed for its docstring but it is not considered a separate test, which is why its body should be
empty.

JavaScript Tests

We currently use casperjs for testing the notebook javascript user interface.

To run the JS test suite by itself, you can either use iptest Js, which will start up a new notebook server and test
against it, or you can open up a notebook server yourself, and then:

cd IPython/html/tests/casperjs;
casperjs test ——-includes=util.js test_cases
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If your testing notebook server uses something other than the default port (8888), you will have to pass that as a
parameter to the test suite as well.

casperjs test ——includes=util.js ——-port=8889 test_cases

Running individual tests

To speed up development, you usually are working on getting one test passing at a time. To do this, just pass the
filename directly to the casperjs test command like so:

casperjs test —--includes=util.js test_cases/execute_code_cell.]s

Wrapping your head around the javascript within javascript:

Casper]S is a browser that’s written in javascript, so we write javascript code to drive it. The Casper browser itself
also has a javascript implementation (like the ones that come with Firefox and Chrome), and in the test suite we get
access to those using this.evaluate, and it’s cousins (this.theEvaluate, etc). Additionally, because of
the asynchronous / callback nature of everything, there are plenty of this.then calls which define steps in test
suite. Part of the reason for this is that each step has a timeout (default of 5 or 10 seconds). Additionally, there are
already convenience functions in util. js to help you wait for output in a given cell, etc. In our javascript tests, if
you see functions which 1ook_like_pep8_naming_convention, those are probably coming from util. js,
whereas functions that come with casper haveCamelCaseNamingConvention

Each file in test_cases looks something like this (this is test_cases/check_interrupt. js):

casper.notebook_test (function () {

this.evaluate (function () {
var cell = IPython.notebook.get_cell (0);
cell.set_text ('import time\nfor x in range(3) :\n time.sleep(l)"');

cell.execute();
)i

// interrupt using menu item (Kernel -> Interrupt)
this.thenClick ('li#int_kernel');

this.wait_for_output (0);

this.then (function () {
var result = this.get_output_cell (0);
this.test.assertEquals (result.ename, 'KeyboardInterrupt', 'keyboard interrupt
— (mouseclick) ");

)i

// run cell 0 again, now interrupting using keyboard shortcut
this.thenEvaluate (function () {

cell.clear_output ();

cell.execute();
1)

// interrupt using Ctrl-M I keyboard shortcut
this.thenEvaluate ( function () {
IPython.utils.press_ghetto (IPython.utils.keycodes.I)

)i

(continues on next page)

3.5. Contributing 103



Jupyter Documentation, Release 4.1.1 alpha

(continued from previous page)

this.wait_for_output (0);

this.then (function () {
var result = this.get_output_cell (0);
this.test.assertEquals (result.ename, 'KeyboardInterrupt', 'keyboard interrupt,
— (shortcut) ') ;
1)
1)

For an example of how to pass parameters to the client-side javascript from casper test suite, see the casper.
wait_for_output implementation in IPython/html/tests/casperjs/util. js

Testing system design notes

This section is a set of notes on the key points of the IPython testing needs, that were used when writing the system
and should be kept for reference as it eveolves.

Testing IPython in full requires modifications to the default behavior of nose and doctest, because the IPython prompt
is not recognized to determine Python input, and because IPython admits user input that is not valid Python (things
like $magics and !system commands.

We basically need to be able to test the following types of code:

e (1) Pure Python files containing normal tests. These are not a problem, since Nose will pick them up as long
as they conform to the (flexible) conventions used by nose to recognize tests.

e (2) Python files containing doctests. Here, we have two possibilities:
* The prompts are the usual >>> and the input is pure Python.
¢ The prompts are of the form In [1] : and the input can contain extended IPython expressions.

In the first case, Nose will recognize the doctests as long as it is called with the ——with-doctest flag. But the
second case will likely require modifications or the writing of a new doctest plugin for Nose that is [Python-aware.

* (3) ReStructuredText files that contain code blocks. For this type of file, we have three distinct possibilities
for the code blocks:

¢ They use >>> prompts.
e Theyuse In [1]: prompts.
* They are standalone blocks of pure Python code without any prompts.

The first two cases are similar to the situation #2 above, except that in this case the doctests must be extracted from
input code blocks using docutils instead of from the Python docstrings.

In the third case, we must have a convention for distinguishing code blocks that are meant for execution from others
that may be snippets of shell code or other examples not meant to be run. One possibility is to assume that all indented
code blocks are meant for execution, but to have a special docutils directive for input that should not be executed.

For those code blocks that we will execute, the convention used will simply be that they get called and are considered
successful if they run to completion without raising errors. This is similar to what Nose does for standalone test
functions, and by putting asserts or other forms of exception-raising statements it becomes possible to have literate
examples that double as lightweight tests.

e (4) Extension modules with doctests in function and method docstrings. Currently Nose simply can’t find
these docstrings correctly, because the underlying doctest DocTestFinder object fails there. Similarly to
#2 above, the docstrings could have either pure python or IPython prompts.
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Of these, only 3-c (reST with standalone code blocks) is not implemented at this point.

How to Compile .less Files

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

For testing your development work in CSS, you’ll need to compile the .less files to CSS. Make sure you have depen-
dencies that LESS requires, including fabric, node, and lessc. Follow the below steps to compile the .less files:

python setup.py css

Alternatively, you can:

$ cd ipython/IPython/html

$ fab css

[localhost] local: components/less.js/bin/lessc -x style/style.less style/style.min.
—Css

[localhost] local: components/less.js/bin/lessc -x style/ipython.less style/ipython.
—min.css

Done

Steps for Releasing IPython

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

This document contains notes about the process that is used to release IPython. Our release process is currently not
very formal and could be improved.

Most of the release process is automated by the release script in the tools directory of our main repository. This
document is just a handy reminder for the release manager.

0. Environment variables

You can set some env variables to note previous release tag and current release milestone, version, and git tag:

PREV_RELEASE=rel-1.0.0
MILESTONE=1.1
VERSION=1.1.0
TAG="rel-$VERSION"
BRANCH=master

These will be used later if you want to copy/paste, or you can just type the appropriate command when the time comes.
These variables are not used by scripts (hence no export).
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1. Finish release notes

* If a major release:

* merge any pull request notes into what’s new:

python tools/update_whatsnew.py

 update docs/source/whatsnew/development . rst, to ensure it covers the major points.
¢ move the contents of development .rst to versionX.rst

¢ generate summary of GitHub contributions, which can be done with:

python tools/github_stats.py ——milestone $MILESTONE > stats.rst

which may need some manual cleanup. Add the cleaned up result and add it to docs/source/whatsnew/
github-stats-X.rst (make a new file, or add it to the top, depending on whether it is a major release). You can
use:

git log —--format="%aN <%aE>" S$PREV_RELEASE... | sort -u -f

to find duplicates and update .mailmap. Before generating the GitHub stats, verify that all closed issues and pull
requests have appropriate milestones. This search should return no results.

2. Run the tools/build_release script

This does all the file checking and building that the real release script will do. This will let you do test installations,
check that the build procedure runs OK, etc. You may want to also do a test build of the docs.

3. Create and push the new tag

Edit IPython/core/release.py to have the current version.

Commit the changes to release.py and jsversion:

git commit -am "release S$SVERSION"
git push origin $BRANCH

Create and push the tag:

git tag —am "release SVERSION" "STAG"
git push origin --tags

Update release.py back to x . y—dev or x.y-maint, and push:

git commit -am "back to development"
git push origin $BRANCH
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4. Get a fresh clone of the tag for building the release:

cd /tmp
git clone --depth 1 https://github.com/ipython/ipython.git -b "S$STAG"

5. Run the release script

cd tools && ./release

This makes the tarballs, zipfiles, and wheels. It posts them to archive.ipython.org and registers the release with PyPI.

This will require that you have current wheel, Python 3.4 and Python 2.7.

7. Update the IPython website

¢ release announcement (news, announcements)
* update current version and download links

* (If major release) update links on the documentation page

8. Drafting a short release announcement

This should include i) highlights and ii) a link to the html version of the What’s new section of the documentation.

Post to mailing list, and link from Twitter.

9. Update milestones on GitHub

* close the milestone you just released

¢ open new milestone for (x, y+1), if it doesn’t exist already

10. Celebrate!

IPython Sphinx Directive

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The ipython directive is a stateful ipython shell for embedding in sphinx documents. It knows about standard ipython
prompts, and extracts the input and output lines. These prompts will be renumbered starting at 1. The inputs will be
fed to an embedded ipython interpreter and the outputs from that interpreter will be inserted as well. For example,
code blocks like the following:
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code:: python3

In [136]: x = 2

In [137]: x*%3
Qut[137]: 8

will be rendered as

In [136]: x = 2

Note: This tutorial should be read side-by-side with the Sphinx source for this document because otherwise you will
see only the rendered output and not the code that generated it. Excepting the example above, we will not in general
be showing the literal ReST in this document that generates the rendered output.

The state from previous sessions is stored, and standard error is trapped. At doc build time, ipython’s output and std
err will be inserted, and prompts will be renumbered. So the prompt below should be renumbered in the rendered
docs, and pick up where the block above left off.

In [138]: z = x*3 # x 1s recalled from previous block

In [140]: print z
,,,,,,,, > print (z)

File "<ipython console>", line 1

aq = zl[) # this is a syntax error —-— we trap ipy exceptions

A

SyntaxError: invalid syntax

The embedded interpreter supports some limited markup. For example, you can put comments in your ipython ses-
sions, which are reported verbatim. There are some handy “pseudo-decorators” that let you doctest the output. The
inputs are fed to an embedded ipython session and the outputs from the ipython session are inserted into your doc. If
the output in your doc and in the ipython session don’t match on a doctest assertion, an error will be

In [1]: x = 'hello world'

# this will raise an error if the ipython output is different

@doctest
In [2]: x.upper/()
Out[2]: '"HELLO WORLD'

# some readline features cannot be supported, so we allow

# "verbatim" blocks, which are dumped in verbatim except prompts
# are continuously numbered

@verbatim

(continues on next page)
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In [3]: x.st<TAB>
x.startswith x.strip

Multi-line input is supported.

In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\
et &d=96e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv'

In [131]: print url.split('&")
77777777 > print(url.split('&"))
["http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22",

You can do doctesting on multi-line output as well. Just be careful when using non-deterministic inputs like random
numbers in the ipython directive, because your inputs are ruin through a live interpreter, so if you are doctesting
random output you will get an error. Here we “seed” the random number generator for deterministic output, and we
suppress the seed line so it doesn’t show up in the rendered output

In [133]: import numpy.random

@suppress
In [134]: numpy.random.seed(2358)

@doctest

In [135]: numpy.random.rand(10,2)

Out [135]:

array ([[ 0.64524308, 0.59943846],
[ 0.47102322, 0.8715456 ],

[ 0.29370834, 0.74776844],
[ 0.99539577, 0.1313423 ],
[ 0.16250302, 0.21103583],
[ 0.81626524, 0.1312433 ],
[ 0.67338089, 0.72302393],
[ 0.7566368 , 0.07033696],
[ 0.22591016, 0.77731835],
[ 0.0072729 , 0.3427312711])

Another demonstration of multi-line input and output

In [106]: print x
,,,,,,,, > print (x)

jdh
In [109]: for i in range(10):
et print i

0

1

2

3

4

5

6

7

8

9
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Most of the “pseudo-decorators” can be used an options to ipython mode. For example, to setup matplotlib pylab
but suppress the output, you can do. When using the matplotlib use directive, it should occur before any import of
pylab. This will not show up in the rendered docs, but the commands will be executed in the embedded interpreter and
subsequent line numbers will be incremented to reflect the inputs:

code:: python3
In [144]: from pylab import =~

In [145]: ion{()

In [144]: from pylab import =

In [145]: ion{()

Likewise, you can set : doctest: or :verbatim: to apply these settings to the entire block. For example,

In [9]: cd mpl/examples/
/home/jdhunter/mpl/examples

In [10]: pwd
Out[10]: '/home/jdhunter/mpl/examples'

In [14]: cd mpl/examples/<TAB>

mpl/examples/animation/ mpl/examples/misc/
mpl/examples/api/ mpl/examples/mplot3d/
mpl/examples/axes_grid/ mpl/examples/pylab_examples/

mpl/examples/event_handling/ mpl/examples/widgets

In [14]: cd mpl/examples/widgets/
/home/msierig/mpl/examples/widgets

In [15]: 'wc =
2 12 77 README.txt
40 97 884 buttons.py
26 90 712 check_buttons.py
19 52 416 cursor.py
180 404 4882 menu.py
16 45 337 multicursor.py

36 106 916 radio_buttons.py

48 226 2082 rectangle_selector.py
43 118 1063 slider_demo.py

40 124 1088 span_selector.py

450 1274 12457 total

You can create one or more pyplot plots and insert them with the @ save fig decorator.

@savefig plot_simple.png width=4in
In [151]: plot([1,2,31);

# use a semicolon to suppress the output
@savefig hist_simple.png width=4in
In [151]: hist(np.random.randn (10000), 100);

In a subsequent session, we can update the current figure with some text, and then resave
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In [151]: ylabel ('number'")
In [152]: title('normal distribution')

@savefig hist_with_text.png width=4in
In [153]: grid(True)

You can also have function definitions included in the source.

In [3]: def square(x):

nwn

An overcomplicated square function as an example.
mmnn
if x < 0:
x = abs(x)
y = X * X
return y

Then call it from a subsequent section.

In [4]: square(3)
Out [4]: 9

In [5]: square(-2)
Out [5]1: 4

Writing Pure Python Code

Pure python code is supported by the optional argument python. In this pure python syntax you do not include the
output from the python interpreter. The following markup:

code:: python

foo = 'bar'
print foo
foo = 2
foox*2

Renders as

foo = 'bar'
print foo
foo = 2
foox*2

We can even plot from python, using the savefig decorator, as well as, suppress output with a semicolon

@savefig plot_simple_python.png width=4in
plot ([1,2,3]1);

Similarly, std err is inserted

foo = 'bar'
fool)
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Comments are handled and state is preserved

# comments are handled
print foo

If you don’t see the next code block then the options work.

ioff ()
ion ()

Multi-line input is handled.

line = "Multi\
line &\
support &\
works'

print line.split('&")

Functions definitions are correctly parsed

def square (x):

mmn

An overcomplicated square function as an example.
mrmmn
if x < O:
X = abs (x)
y = X % X
return y

And persist across sessions

print square (3)
print square (-2)

Pretty much anything you can do with the ipython code, you can do with a simple python script. Obviously, though it
doesn’t make sense to use the doctest option.

Pseudo-Decorators

Here are the supported decorators, and any optional arguments they take. Some of the decorators can be used as

options to the entire block (eg verbatim and suppress), and some only apply to the line just below them (eg
savefigq).

@suppress

execute the ipython input block, but suppress the input and output block from the rendered output. Also,
can be applied to the entire . . ipython block as a directive option with : suppress:.

@verbatim

insert the input and output block in verbatim, but auto-increment the line numbers. Internally, the inter-
preter will be fed an empty string, so it is a no-op that keeps line numbering consistent. Also, can be
applied to the entire . . ipython block as a directive option with : verbatim:.

@savefig OUTFILE [IMAGE_OPTIONS]

save the figure to the static directory and insert it into the document, possibly binding it into a minipage
and/or putting code/figure label/references to associate the code and the figure. Takes args to pass to the
image directive (scale, width, etc can be kwargs); see image options for details.
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@doctest

Compare the pasted in output in the ipython block with the output generated at doc build time, and raise
errors if they dond€™t match. Also, can be applied to the entire . . ipython block as a directive option
with :doctest:.

Configuration Options

ipython_savefig_dir

The directory in which to save the figures. This is relative to the Sphinx source directory. The default is
html_static_path.

ipython_rgxin

The compiled regular expression to denote the start of [Python input lines. The default is re.compile(‘In
[(d+)]:s?2(.*)s*’). You shouldn’t need to change this.

ipython_rgxout

The compiled regular expression to denote the start of IPython output lines. The default is
re.compile(‘Out[(d+)]:s?(.*)s*’). You shouldn’t need to change this.

ipython_promptin

The string to represent the IPython input prompt in the generated ReST. The default is ‘In [%d]:’. This
expects that the line numbers are used in the prompt.

ipython_promptout

The string to represent the IPython prompt in the generated ReST. The default is ‘Out [%d]:’. This expects
that the line numbers are used in the prompt.

Python 3 Compatibility Module

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The IPython.utils.py3compat module provides a number of functions to make it easier to write code for
Python 2 and 3. We also use 2to3 in the setup process to change syntax, and the io.open () function, which is
essentially the built in open function from Python 3.

The names provided are:

e PY3: True in Python 3, False in Python 2.

Unicode related

* decode, encode: Shortcuts to decode or encode strings, using sys.stdin.encoding by default, and using
replacement characters on errors.

e str_to_unicode, unicode_to_str, str_to_bytes, bytes_to_str: Convert to/from the platform’s standard str
type (bytes in Python 2, unicode in Python 3). Each function is a no-op on one of the two platforms.

* cast_unicode, cast_bytes: Accept unknown unicode or byte strings, and convert them accordingly.

* cast_bytes_py2: Casts unicode to byte strings on Python 2, but doesn’t do anything on Python 3.

3.5. Contributing 113



Jupyter Documentation, Release 4.1.1 alpha

Miscellaneous

input: Refers to raw_input on Python 2, input on Python 3 (needed because 2to3 only converts calls to
raw_input, not assignments to other names).

builtin_mod_name: The string name you import to get the builtins (__builtin__ —>builtins).
isidentifier: Checks if a string is a valid Python identifier.

open: Simple wrapper for Python 3 unicode-enabled open. Similar to codecs.open, but allows universal
newlines. The current implementation only supports the very simplest use.

MethodType: types.MethodType from Python 3. Takes only two arguments: function, instance. The class
argument for Python 2 is filled automatically.

doctest_refactor_print: Can be called on a string or a function (or used as a decorator). In Python 3, it converts
print statements in doctests to print() calls. 2to3 does this for real doctests, but we need it in several other places.
It simply uses a regex, which is good enough for the current cases.

u_format: Where tests use the repr() of a unicode string, it should be written ' {u} "thestring""', and fed
to this function, which will produce 'u"thestring"' for Python 2, and ' "thestring"' for Python 3.
Can also be used as a decorator, to work on a docstring.

execfile: Makes a return on Python 3 (where it’s no longer a builtin), and upgraded to handle Unicode filenames
on Python 2.

Architecture of IPython notebook’s Dashboard

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The tables below show the current RESTful web service architecture implemented in IPython notebook. The listed
URL’s use the HTTP verbs to return representations of the desired resource.

We are in the process of creating a new dashboard architecture for the IPython notebook, which will allow the user to
navigate through multiple directory files to find desired notebooks.

Current Architecture

Miscellaneous

HTTP verb | URL Action

GET 1%/ Strips trailing slashes.

GET /api Returns api version information.

* /api/notebooks | Deprecated: redirect to /api/contents
GET /api/nbconvert

Notebook contents API.
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HTTP URL Action
verb
GET | /api/contents Return a model for the base directory. See /api/contents/<path>/<file>.

GET | /api/contents/ Return a model for the given file in the base directory. See /api/contents/<path>/<file>.
<file>
GET | /api/contents/ Return a model for a file or directory. A directory model contains a list of models (without
<path>/<file>content) of the files and directories it contains.

PUT | /api/contents/ Saves the file in the location specified by name and path. PUT is very similar to POST,
<path>/<file>but the requester specifies the name, where as with POST, the server picks the name. PUT
/api/contents/path/Name.ipynb Save notebook at path/Name.ipynb. Notebook structure
is specified in content key of JSON request body. If content is not specified, create a
new empty notebook. PUT /api/contents/path/Name.ipynb with JSON body {“copy_from” :
“[path/to/] OtherNotebook.ipynb”} Copy OtherNotebook to Name

PAT(Hapi/contents/ Renames a notebook without re-uploading content.

<path>/<file>
POST /api/contenty/ Creates a new file or directory in the specified path. POST creates new files or directories. The
<path>/<file>server always decides on the name. POST /api/contents/path New untitled notebook in path.
If content specified, upload a notebook, otherwise start empty. POST /api/contents/path with
body {“copy_from”:”’OtherNotebook.ipynb”} New copy of OtherNotebook in path

DELE Tapi/contents/ delete a file in the given path.

<path>/<file>
GET | /api/contents/ get lists checkpoint for a file.
<path>/<file>
/check-
points
POST /api/contents/ post creates a new checkpoint.
<path>/<file>
/check-
points
POST /api/contents/ post restores a file from a checkpoint.
<path>/<file>
/check-
points/
<check-
point_
id>
DELE Tapi/contents/ delete clears a checkpoint for a given file.
<path>/<file>
/check-
points/
<check-
point_
id>

Kernel API

3.5. Contributing 115



Jupyter Documentation, Release 4.1.1 alpha

HTTP URI Action
verb
GET /api/kernels Return a model of all kernels.
GET /api/kernels /<kernel_id> Return a model of kernel with given kernel id.
POST /api/kernels Start a new kernel with default or given name.
DELETE | /api/kernels /<kernel_id> Shutdown the given kernel.
POST /api/kernels  /<kernel_id> | Perform action on kernel with given kernel id. Actions can be “inter-
/<action> rupt” or “restart”.
WS /api/kernels /<kernel id> | Websocket stream
/channels
GET /api/kernel specs Return a spec model of all available kernels.
GET /api/kernel  specs/ <ker- | Return a spec model of all available kernels with a given kernel name.
nel_name>
Sessions API
HTTP | URL Action
verb
GET /api/sesions Return model of active sessions.
POST /api/sessions If session does not already exist, create a new session with given notebook name and
path and given kernel name. Return active sesssion.
GET /api/sessions Return model of active session with given session id.
/<session_id>
PATCH | /api/sessions Return model of active session with notebook name or path of session with given
/<session_id> session id.
DELETE /api/sessions Delete model of active session with given session id.
/<session_id>
Clusters API
HTTP URL Action
verb
GET /api/clusters Return model of clusters.
GET /api/clusters <cluster_id> Return model of given cluster.
POST /api/clusters <cluster_id> <ac- | Perform action with given clusters. Valid actions are “start” and
tion> “stop”
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Old Architecture

This chart shows the web-services in the single directory IPython notebook.

HTTP URL Action

verb

GET /notebooks return list of dicts with each notebook’s info

POST /notebooks if sending a body, saving that body as a new notebook; if no body, create a

a new notebook.

GET /notebooks /<note- | get JSON data for notebook
book_id>

PUT /notebooks /<note- | saves an existing notebook with body data
book_id>

DELETE | /notebooks /<note- | deletes the notebook with the given ID
book_id>

This chart shows the architecture for the [Python notebook website.

HTTP URL Action

verb

GET / navigates user to dashboard of notebooks and clusters.

GET /<notebook_id> go to wepage for that notebook

GET /new creates a new notebook with profile (or default, if no profile exists) setings

GET /<notebook_id> opens a duplicate copy or the notebook with the given ID in a new tab
/copy

GET /<notebook_id> prints the notebook with the given ID; if notebook doesn’t exist, displays error
/print message

GET /login navigates to login page; if no user profile is defined, it navigates user to dash-

board
GET /logout logs out of current profile, and navigates user to login page

This chart shows the Web services that act on the kernels and clusters.

HTTP URL Action

verb

GET /kernels return the list of kernel IDs currently running

GET /kernels /<kernel_id> —

GET /kernels /<kernel_id> <action> performs action (restart/kill) kernel with given ID

GET /kernels /<kernel_id> /iopub —

GET /kernels /<kernel_id> /shell —

GET /rstservice/ render —

GET /files/(.*) —

GET [clusters returns a list of dicts with each cluster’s information

POST /clusters /<profile_id> /<cluster_ ac- | performs action (start/stop) on cluster with given profile
tion> ID

GET [clusters /<profile_id> returns the JSON data for cluster with given profile ID
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JavaScript Events

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

(Note: this page is not currently consistent with IPython/Jupyter master)

Javascript events are used to notify unrelated parts of the notebook interface when something happens. For example,
if the kernel is busy executing code, it may send an event announcing as such, which can then be picked up by other
services, like the notification area. For details on how the events themselves work, see the JQuery documentation.

This page documents the core set of events, and explains when and why they are triggered.

Cell-related events

e command_mode.Cell
* create.Cell

* delete.Cell

* edit_mode.Cell

e select.Cell

* output_appended.OutputArea

CellToolbar-related events

e preset_activated.CellToolbar

e preset_added.CellToolbar

Dashboard-related events

* app_initialized.DashboardApp

e sessions_loaded.Dashboard

app_initialized.DashboardApp

When the Jupyter Notebook browser window opens for the first time and initializes the Dashboard App. The Dash-
board App lists the files and notebooks in the current directory. Additionally, it lets you create and open new Jupyter
Notebooks.
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Kernel-related events

execution_request.Kernel
input_reply.Kernel
kernel_autorestarting. Kernel
kernel_busy.Kernel

kernel_connected. Kernel

kernel_connection_failed.Kernel

kernel_created.Kernel
kernel_created.Session
kernel_dead.Kernel
kernel_dead.Session
kernel_disconnected.Kernel
kernel_idle.Kernel
kernel_interrupting. Kernel
kernel_killed.Kernel
kernel_killed.Session
kernel_ready.Kernel
kernel_reconnecting.Kernel
kernel_restarting. Kernel
kernel_starting. Kernel
send_input_reply.Kernel
shell_reply.Kernel

spec_changed.Kernel

kernel_created.Kernel

The kernel has been successfully created or re-created through /api/kernels, but a connection to it has not nec-

essarily been established yet.

kernel_created.Session

The kernel has been successfully created or re-created through /api/sessions, but a connection to it has not

necessarily been established yet.
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kernel_reconnecting.Kernel

An attempt is being made to reconnect (via websockets) to the kernel after having been disconnected.

kernel_connected.Kernel

A connection has been established to the kernel. This is triggered as soon as all websockets (e.g. to the shell, iopub,
and stdin channels) have been opened. This does not necessarily mean that the kernel is ready to do anything yet,
though.

kernel_starting.Kernel

The kernel is starting. This is triggered once when the kernel process is starting up, and can be sent as a message
by the kernel, or may be triggered by the frontend if it knows the kernel is starting (e.g., it created the kernel and is
connected to it, but hasn’t been able to communicate with it yet).

kernel_ready.Kernel

Like kernel_idle.Kernel, but triggered after the kernel has fully started up.

kernel_restarting.Kernel

The kernel is restarting. This is triggered at the beginning of an restart call to /api/kernels.

kernel_autorestarting.Kernel

The kernel is restarting on its own, which probably also means that something happened to cause the kernel to die. For
example, running the following code in the notebook would cause the kernel to autorestart:

import os
os._exit (1)

kernel_interrupting.Kernel

The kernel is being interrupted. This is triggered at the beginning of a interrupt call to /api/kernels.

kernel_disconnected.Kernel

The connection to the kernel has been lost.
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kernel_connection_failed.Kernel

Not only was the connection lost, but it was lost due to an error (i.e., we did not tell the websockets to close).

kernel_idle.Kernel

The kernel’s execution state is ‘idle’.

kernel_busy.Kernel

The kernel’s execution state is ‘busy’.

kernel_killed.Kernel

The kernel has been manually killed through /api/kernels.

kernel_killed.Session

The kernel has been manually killed through /api/sessions.

kernel_dead.Kernel

This is triggered if the kernel dies, and the kernel manager attempts to restart it, but is unable to. For example, the
following code run in the notebook will cause the kernel to die and for the kernel manager to be unable to restart it:

import os
from IPython.kernel.connect import get_connection_file
with open (get_connection_file(), 'w') as f:
f.write ("garbage")
os._exit (1)

kernel_dead.Session

The kernel could not be started through /api/sessions. This might be because the requested kernel type isn’t
installed. Another reason for this message is that the kernel died or was killed, but the session wasn’t.

Notebook-related events

* app_initialized. NotebookApp

* autosave_disabled.Notebook

e autosave_enabled.Notebook

* checkpoint_created.Notebook

* checkpoint_delete_failed.Notebook
* checkpoint_deleted.Notebook
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* checkpoint_failed.Notebook

e checkpoint_restore_failed. Notebook
* checkpoint_restored.Notebook

e checkpoints_listed.Notebook

e command_mode.Notebook

* edit_mode.Notebook

e list_checkpoints_failed.Notebook

* notebook_load_failed.Notebook

¢ notebook_loaded.Notebook

* notebook_loading.Notebook

* notebook_rename_failed.Notebook
e notebook_renamed.Notebook

* notebook_restoring.Notebook

* notebook_save_failed.Notebook

¢ notebook_saved.Notebook

* notebook_saving.Notebook

* rename_notebook.Notebook

e selected_cell_type_changed.Notebook
e set_dirty.Notebook

* set_next_input.Notebook

* trust_changed.Notebook

Other

* open_with_text.Pager

e rebuild.QuickHelp

Setup IPython development environment using boot2docker

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The following are instructions on how to get an IPython development environment up and running without having to in-
stall anything on your host machine, other than “boot2docker <https://github.com/boot2docker/boot2docker>"__
and "~ docker <https://www.docker.com/>"__.
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Install boot2docker

Install boot2docker. There are multiple ways to install, depending on your environment. See the boot2docker docs.

Mac OS X

On a Mac OS X host with Homebrew installed:

’$ brew install boot2docker docker

Initialize boot2docker VM

$ boot2docker init

Start VM

’$ boot2docker up

The boot 2docker CLI communicates with the docker daemon on the boot 2docker VM. To do this, we must set

some environment variables, e.g. DOCKER_HOST,

’$ S (boot2docker shellinit)

To view the IP address of the VM:

$ boot2docker ip
192.168.59.103

Install ipython from Development Branch

$ git clone —--recursive https://github.com/ipython/ipython.git

Build Docker Image

Use the Dockerfile in the cloned ipython directory to build a Docker image.

$ cd ipython
$ docker build --rm -t ipython
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Run Docker Container

Run a container using the new image. We mount the entire ipython source tree on the host into the container at
/srv/ipython to enable changes we make to the source on the host immediately reflected in the container.

# change to the root of the git clone

$ cd ipython

$ docker run —-it —--rm -p 8888:8888 —-workdir /srv/ipython —--name ipython-dev -v_,
— 'pwd’ :/srv/ipython ipython /bin/bash

To list the running container from another shell on the host:

S $ (boot2docker shellinit)
$ docker ps

CONTAINER ID IMAGE COMMAND CREATED .
—STATUS PORTS NAMES

£f6065£206519 ipython "/bin/bash" 1 minutes ago Up 1.,
—minutes 0.0.0.0:8888->8888/tcp ipython-dev

Install IPython in Editable Mode

Once in the container, you’ll need to uninstall the ipython package and re-install in editable mode to enable your
dev changes to be reflected in your environment.

container $ pip uninstall ipython

# pip install ipython in editable mode
container $ cd /srv

container $ 1ls

ipython

container $ pip install -e ipython

Run Notebook Server

container $ ipython notebook —--no-browser —--ip=%*

Visit Notebook Server

On your host, run the following command to get the IP of the boot2docker VM if you forgot:

# on host
$ boot2docker ip
192.168.59.103

Then visit it in your browser:

# browser
http://192.168.59.103:8888

As a shortcut on a Mac, you can run the following in a terminal window (or make it a bash alias):
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$ open http://$ (boot2docker ip 2>/dev/null) :8888

Testing Kernels

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

IPython makes it very easy to create wrapper kernels using its kernel framework. It requires extending the Kernel
class and implementing a set of methods for the core functions like execute, history etc. Its also possible to write a full
blown kernel in a language of your choice implementing listeners for all the zmq ports.

The key problem for any kernel implemented by these methods is to ensure that it meets the message specification.
The kerneltest command is a means to test the installed kernel against the message spec and validate the results.

The kerneltest tool

The kerneltest tool is part of [Python.testing and is also included in the scripts similar to iptest. This takes 2 parameters
- the name of the kernel to test and the test script file. The test script file should be in json format as described in the
next section.

’kerneltest python test_script. json

You can also pass in an optional message spec version to the command. At the moment only the version 5 is supported,
but as newer versions are released this can be used to test the kernel against a specific version of the kernel.

’kerneltest python test_script.json 5

The kernel to be tested needs to be installed and the kernelspec available in the user IPython directory. The tool will
instantiate the kernel and send the commands over ZMQ. For each command executed on the kernel, the tool will
validate the reply to ensure that it matches the message specification. In some cases the output is also checked, but
the reply is always returned and printed out on the console. This can be used to validate that apart from meeting the
message spec the kernel also produced the correct output.

The test script file

The test script file is a simple json file that specifies the command to execute and the test code to execute for the
command.

{
"command" : {
"test_code":<code>

For some commands in the message specification like kernel_info there is no need to specify the test_code parameter.
The tool validates if it has all the inputs needed to execute the command and will print out an error to the console if
it finds a missing parameter. Since the validation is built in, and only required parameters are passed, it is possible to
add additional fields in the json file for test documentation.
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"command" : {
"test_name":"sample test",
"test_description":"sample test to show how the test script file is created

"test_code":<code>

A sample test script for the redis kernel will look like this

{
"execute": {
"test_code":"get a",
"comments":"test basic code execution"
}l
"complete": {
"test_code":"get",
"comments":"test getting command auto complete"
}I
"kernel_info":{
"comments":"simple kernel info check"
}I
"single_payload":{
"test_code":"get a",
"comments":"test one payload"
}I
"history_tail":{
"test_code":"get a",
"comments":"test tail history"
}I
"history_range":{
"test_code":"get a",
"comments":"test range history"
}I
"history_search":{
"test_code":"get a",
"comments":"test search history"

A template for new Python files in IPython: template.py
Whether you are a new, returning, or current contributor to Project Jupyter’s subprojects or IPython, we welcome you.

Project Jupyter has seen steady growth over the past several years, and it is wonderful to see the many ways people
are using these projects. As a result of this rapid expansion, our project maintainers are balancing many requirements,
needs, and resources. We ask contributors to take some time to become familiar with our contribution guides and
spend some time learning about our project communication and workflow.

The Contributor Guides and individual project documentation offer guidance. If you have a question, please ask us.
Community Resources provides information on our commonly used communication methods.

We are very pleased to have you as a contributor, and we hope you will find valuable your impact on the projects.
Thank you for sharing your interests, ideas, and skills with us.
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3.5.6 Do I really have something to contribute to Jupyter?

Absolutely . There are always ways to contribute to this community! Whether it is is contributing code, improving
documentation and communications, teaching others, or participating in conversations in the community, we welcome
and value your contribution!

3.5.7 What kinds of contributions can | make?

The following sections try to provide inspirations for different ways that you can contribute to the Jupyter ecosystem.
They’re non-complete - if you can think up any way to make an improvement, we appreciate it!

Improving documentation

One of the most important parts of the Jupyter ecosystem is its documentation. Good documentation makes it easier
for users to learn how to use the tools. It also makes it easier to teach others, and to maintain and improve the code
itself. There are many ways to improve documentation, such as reading tutorials and reporting confusing parts,
finding type-os and minor errors in docs, writing your own guides and tutorials, improving docstrings within
the code, and improving documentation style and design.

If you’d like to improve documentation in the Jupyter community, check out the Documentation Guide.

Improving code

There are many different codebases that make up the tools in the Jupyter ecosystem. These are split across many
repositories in several GitHub organizations. They cover many different parts of interactive computing, such as user
interfaces, kernels, shared infrastructure, interactive widgets, or structured documents.

We recommend checking out the Developer Guide for more information about how you can find the right project to
contribute to, and where to go next.

Participating in the community

The most important part of Jupyter is its community - this is a large and diverse group of people spread across the
globe. One of the best ways to contribute to Jupyter is to simply be a positive and helpful member of this community.
Whether it participating in online conversations, offering to help others, coming to community meetings, or
teaching others about Jupyter, there are many ways to improve the Jupyter community. For more information about
this, we recommend starting with the Community.

3.6 Reference

3.6.1 Custom mimetypes (MIME types)

What’s a mimetype?

When an internet request and response occurs, a Content—-Type header is passed. A mimetype, also referred to
as MIME type, identifies how the content that is being returned should be handled or used, based on type, by the
application and browser. A MIME type is made up of a MIME group (i.e. application, image, audio, etc.) and a
MIME subtype. For example, a MIME type is image/png where MIME group is image and subtype is png.

As types may contain vendor specific items, a custom vendor specific MIME type, vnd, can be used. A vendor specific
MIME type will contain vnd such as application/vnd. jupyter.cells.
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Custom mimetypes used in Jupyter and IPython projects

* application/vnd. jupyter
* application/vnd. jupyter.cells
* application/vnd. jupyter.dragindex used by nbdime
e application/x—ipynb+json for notebooks
* text/html
— metadata:

* 1solated: boolean— HTML should be rendered inside an <iframe>.

Listing of custom mimetypes used for display
* application/vnd.geo+json - GeoJSON spec application/vnd.geo+json is now deprecated
and replaced by application/geo+Jjson
* application/geo+3json - preferred GeoJSON spec
e application/vnd.plotly.v1l+Jjson - Plotly JSON Schema

* application/vdom.v1l+json - Virtual DOM spec

3.6.2 IPython

I P [y]: }nlzg"-gcr’:?vg Computing

Description

IPython provides a rich architecture for interactive computing with:
* A powerful interactive shell.
¢ A kernel for Jupyter.
 Support for interactive data visualization and use of GUI toolkits.
* Flexible, embeddable interpreters to load into your own projects.

* Easy to use, high performance tools for parallel computing.

Background

IPython is a growing project, with increasingly language-agnostic components. IPython 3.x was the last monolithic
release of IPython, containing the notebook server, qtconsole, etc. As of IPython 4.0, the language-agnostic parts of
the project: the notebook format, message protocol, qtconsole, notebook web application, etc. have moved to new
projects under the name Jupyter. IPython itself is focused on interactive Python, part of which is providing a Python
kernel for Jupyter.
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Resources

3.6.3 Glossary

command line The terminal or console window where you type commands.

Command Prompt On Windows, this is the application where commands are typed into a window for execution.
conda The package manager for Anaconda.

config Refers to the configuration files and process.

kernel A kernel provides programming language support in Jupyter. IPython is the default kernel. Additional kernels
include R, Julia, and many more.

Notebook Dashboard The notebook user interface which shows a list of the notebooks, files, and subdirectories in
the directory where the notebook server is started.

pip Python package manager.

profiles Not available in Jupyter. In IPython 3, profiles are collections of configuration and runtime files.
REPL read-eval-print-loop.

terminal A window used to type in commands to be executed (Linux and OS X).

widget A user interface component, similar to a plugin, that allows customized input, such as a slider.

3.6.4 Resources

* genindex

e search
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RESOURCES

Site

Description

Jupyter website

Keep up to date on Jupyter

[Python website

Learn more about IPython

jupyter/help repo

Start here for help and support questions

Jupyter mailing list

General discussion of Jupyter’s use

Jupyter in Education group

Discussion of Jupyter’s use in education

NumFocus

Promotes world-class, innovative, open source scientific software

Donate to Project Jupyter

Please contribute to open science collaboration and sustainability
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* genindex
* Glossary

¢ search
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nbformat, 30
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