DeepThought

This package provides functions for

computations in finitely generated

nilpotent groups based on the Deep
Thought algorithm.

1.0.6

6 October 2022
Nina Wagner

Nina Wagner
Email: github@n-i-n-a.de

mailto://github@n-i-n-a.de

Contents

1 The Deep Thought algorithm 3
1.1 Category DTObj e e e 4
2 Using Deep Thought functions 5
2.1 Computing Deep Thought polynomials 5
2.2 Computations with Deep Thought polynomials 6
2.3 Computations with pcp-elements 8
2.4 Accessing Deep Thought polynomials, 9
References 11
Index 12

Chapter 1

The Deep Thought algorithm

Polycyclic and, especially, finitely generated nilpotent groups exhibit a rich structure allowing a spe-
cial approach towards multiplication using polynomials. The so-called Deep Thought algorithm in-
troduced in [LGS98] computes these polynomials in practice for a suitable presentation of a finitely
generated nilpotent group. Such a presentation is of the following form

Cijii+1

ci, . _ Cijoj+1 Cijm S
il a1 <i<n,aja; = aaja a1 <i< j<n)

(ar,....an|aj' =a j+1
with s; € NU{eo} and ¢; j x € Z. If 5; = oo, then the power relation a;" is skipped.

Let G denote the group presented by the above presentation. Then every element in G can be
written uniquely in a so-called normal form. That is, if G; := (a;, ...,a,) and r; := |G; : Gi41|, 1 <i<n,
are the relative orders, then for certain e; € Z each element can be written as

€n

€1
al ---a,

with 0 < e; < r; if r; < oo, A presentation is called confluent if and only if s; = r; forall 1 <i <n. If
a presentation is not confluent, not all functions provided in this package are applicable, see function
DTP_DTapplicability. For more theoretical background see for example the documentation of the
GAP package Polycyclic.
The Deep Thought algorithm computes rational polynomials fi,...,f, in 2n indeterminates
Yn

such that if x := a}'---a}» and y := a}'---a)" are two elements (in normal form or not with

Xlye-esXnsV1,---,Yn € Z), then their product xy is given by

a{l (X1 yeees X Y1 5eesYn) . a.rf:n(xl s XY 1o V))
If the collector is confluent, also the normal form of the product can be computed. Otherwise this is
not possible. Moreover, there exists a second version of the Deep Thought algorithms which computes
n? polynomials f, 1 < r,s < n, suitable for multiplications of the form

x,,) . ayS — a{ls(xh-"»xmh) .. .ag‘ns(xlwnaxm_)’s)

(a’}l ...an 4

for 1 <s < n. Each general multiplication can be expressed using these special multiplications. De-
pending on the presentation, polynomials of one version may be more efficient for computations than
the polynomials of the other version. For a suggestion on which polynomials to use for a given pre-
sentation, see DTP_DTapplicability. In the following, Deep Thought type f, refers to the Deep
Thought algorithm which uses n polynomials and type f, refers to the Deep Thought algorithm using
n? polynomials.

DeepThought 4

In order to work with the Deep Thought functions, the group presentation is expected to be given
as a collector coll, as defined in the GAP package Polycyclic. Moreover, the Polycyclic package
introduces the structure of exponent vectors expvec, which will be used also in this package to rep-
resent group elements. In the following text, a group element ;' - - - @) is identified with its exponent
vector in form of the list [x_1, ..., x_n]. For example, if expvecl, expvec?2 are exponent vec-
tors of elements in the same group, then expvecl * expvec2 describes the multiplication of the
corresponding group elements, and so on. Note that generally exponent vectors are not assumed to
represent normal forms.

1.1 Category DTObj

This package uses the category DTObj. A DTObj is a IsFromTheLeftCollectorRep with certain
further list entries to store the Deep Thought polynomials of a collector together with some additional
information. That is, the functions DTP_DTpols_r and DTP_DTpols_rs return a DTObj which has
entries as IsFromTheLeftCollectorRep and additionally:

* DTObj! [PC_DTPPolynomials]: Deep Thought polynomials in form of (nested) lists
* DTObj! [PC_DTPOrders]: list containing orders of group generators if the collector is confluent

* DTObj! [PC_DTPConfluent]: boolean value indicating whether the collector is confluent or
not

Chapter 2

Using Deep Thought functions

In the following sections, functions provided for computing Deep Thought polynomials and using
them for calculations are listed.

2.1 Computing Deep Thought polynomials

2.1.1 DTP_DTapplicability

> DTP_DTapplicability(coll) (function)

Returns: boolean

Checks the collector coll for applicability of Deep Thought functions. Note that depending on
confluency some functions may be applicable, while others are not. Information on the applicability
and which type of Deep Thought polynomials are suggested is printed to the terminal. Here, "+"
means that the following property is fulfilled, otherwise there is a "-". The function returns false if
Deep Thought is not applicable to the collector coll and true otherwise. Anyway, even if true is
returned, not all functions need to be applicable (in case of inconfluencies).

2.1.2 DTP_DTObjFromCollector

> DTP_DTObjFromCollector(coll[, rs_flagl) (function)
Returns: a DTObj
Computes a DTODb;j for the collector coll, either with polynomials of type f,s (if rs_flag = true)
or with polynomials of type f;, if rs_flag = false. If the optional argument rs_flag is not pro-
vided, polynomials of type f,, are computed. The function checks whether the collector coll is
confluent. If not, a warning is displayed. Note that the function assumes the collector coll to be
suitable for Deep Thought, see function DTP_DTapplicability.
Example
gap> G := UnitriangularPcpGroup(10, 0);;
gap> coll := Collector(G);;
gap> DTP_DTapplicability(coll);
Checking collector for DT-applicability. "+" means the following property
is fulfilled.
+ conjugacy relations
+ power relations
+ confluent
Suggestion: Call DTP_DTObjFromColl with rs_flag = true.

DeepThought 6

true

calling DTP_DTObjFromCollector without rs_flag implies rs_flag = true:
gap> DTObj := DTP_DTObjFromCollector(coll);

<DTObj>

2.2 Computations with Deep Thought polynomials

2.2.1 DTP_Exp

> DTP_Exp(expvec, int, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of expvec™. If IsConfluent (DTObj) = true, then the result is
in normal form.

2.2.2 DTP_ Inverse

> DTP_Inverse(expvec, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of the inverse of the element corresponding to expvec. If
IsConfluent (DTObj) = true, then the result is in normal form.

2.2.3 DTP_IsInNormalForm

> DTP_IsInNormalForm(expvec, coll) (function)
Returns: boolean or positive integer
Checks whether expvec is in normal form or not. If yes, the return value is true. Otherwise the
return value is the smallest generator index for which the normal form condition is violated, i.e. for
which the relative order RelativeOrder (coll) [i] is non-zero, and expvec[i] < O or expvec[i]
> RelativeOrder(coll) [i].

2.2.4 DTP_Multiply

> DTP_Multiply(expvecl, expvec2, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of the product expvecl * expvec2 using the Deep Thought
polynomials. If IsConfluent(DTObj) = true, then the result is returned in normal form.
DTP_Multiply either calls DTP_Multiply_r or DTP_Multiply_rs depending on which type of poly-
nomials are stored in DTOb].

2.2.5 DTP_Multiply_r

> DTP_Multiply_r(expvecl, expvec2, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of the product expvecl * expvec2 using the Deep Thought poly-
nomials of type f; stored in DT_0bj. If IsConfluent (DTObj) = true, then the result is returned in
normal form.

DeepThought 7

2.2.6 DTP_Multiply_rs

> DTP_Multiply_rs(expvecl, expvec2, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of the product expvecl * expvec2 using the Deep Thought poly-
nomials of type f; stored in DT_0bj. If IsConfluent (DTObj) = true, then the result is returned in
normal form.

2.2.7 DTP_NormalForm

> DTP_NormalForm(expvec, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of the normal form of expvec. For this function to be applicable,
we need IsConfluent (DTObj) = true.

2.2.8 DTP_Order

> DTP_Order(evaec, DTUbj) (function)
Returns: positive integer or infinity
Computes the order of the element described by expvec. For this function to be applicable, we
need IsConfluent (DTObj) = true.

2.2.9 DTP_SolveEquation

> DTP_SolveEquation(expvecl, expvec2, DTObj) (function)
Returns: an exponent vector
Computes the exponent vector of the element corresponding to expveci™! * expvec?2, i.e. the
result solves the equation expvecl * result = expvec?2. If IsConfluent (DTObj) = true, then
the result describes a normal form.

Example
gap> G := PcGroupToPcpGroup(SmallGroup(23~5, 2));
Pcp-group with orders [23, 23, 23, 23, 23]
gap> coll := Collector(G);

<<from the left collector with 5 generators>>
gap> DTObj := DTP_DTObjFromCollector(coll);
<DTObj>

gap> g := [100, 134, -31, 52, 5235];

[100, 134, -31, 52, 5235]

gap> DTP_IsInNormalForm(g, DTObj) ;

1

gap> g := DTP_NormalForm(g, DTObj);

[8, 19, 15, 10, 19]

gap> DTP_IsInNormalForm(g, DTObj) ;

true

gap> DTP_Inverse(g, DTODbj);

[15, 4, 22, 12, 3]

gap> DTP_Order (g, DTObj);

529

gap> h := [142, 2, -41, 23, 1];

[142, 2, -41, 23, 1]

DeepThought 8

gap> DTP_Multiply(g, h, DTObj);
[12, 21, 4, 16, 20 1]

2.3 Computations with pcp-elements

When Deep Thought polynomials are available, certain computations allow different approaches
which may be faster than the methods used by default. In this section, computations for which such
extra functions taking pcp-elements as input are available are listed. All of these functions expect the
collector belonging to the pcp-elements to be a DTObj.

2.3.1 DTP_PCP_Exp

> DTP_PCP_Exp(pcp-element, int) (function)
Returns: pcp-element
Returns the pcp-element pcp-element™. If IsConfluent (DTObj) = true, then the result is in
normal form.

2.3.2 DTP_PCP_Inverse

> DTP_PCP_Inverse (pcp-element) (function)
Returns: pcp-element
Returns the pcp-elment pcp-element~-1. If IsConfluent (DTObj) = true, then the result is
in normal form.

2.3.3 DTP_PCP_NormalForm

> DTP_PCP_NormalForm(pcp-element) (function)
Returns: pcp-element
Returns a pcp-element which is the normal form of the input pcp-element. For this function to be
applicable, we need IsConfluent (DTObj) = true.

2.3.4 DTP_PCP_Order

> DTP_PCP_Order (pcp-element) (function)
Returns: positive integer or infinity
Computes the order of the pcp-element. For this function to be applicable, we need
IsConfluent (DTObj) = true.

2.3.5 DTP_PCP_SolveEquation

> DTP_PCP_SolveEquation(pcp-elementl, pcp-element2) (function)
Returns: pcp-element
Returns the pcp-element pcp-element1 ™! * pcp-element2, i.e. the result solves the equation
pcp-elementl * pcp-element = pcp-element?2. If IsConfluent (DTObj) = true, then the re-
sult describes a normal form.

DeepThought 9

Example

gap> G := HeisenbergPcpGroup(7);;

gap> coll := Collector(G);;

gap> DTObj := DTP_DTObjFromCollector(coll);;

gap> H := PcpGroupByCollector (DTObj) ;;

gap> g := Random(H);; h := Random(H);;

gap> DTP_PCP_SolveEquation(g, h);
gl~-3%g2~-1%g3~-Txgd*gb~-6xgb*xgT g8~ 2xg9~3*gl11~-4*gl12~5xg14~-2*xgl15~7
gl~-3%g2~-1%g3~-Txgd*gb~-6xgb*xg7T*g8~2xg9~3*gl11~-4*xgl12~5xg14~-2*xgl15~7
infinity

gap> g~-1;
gl17-2%g37-3*gd~-1%g5~-4*gb6~2*g7*g8~-3*g107-3*%gl1~-1*xg12~4*xgl14~-2%g15~-3
gap> DTP_PCP_Inverse(h);
glxg2xg3~4*gd~-2xghb~2%g6*xg8~-5xg9~-3*gl10~-3%gl11~3*gl12~-1%g15~-33

2.4 Accessing Deep Thought polynomials

In this section, functions which can be used to display the content of a DTObj are documented. Fur-
thermore, Deep Thought polynomials stored in a DTObj can be converted to GAP polynomials.

2.4.1 DTP_Display_DTObj

> DTP_Display_DTObj (DTUbj) (function)
Returns: nothing
Prints information about DTObj to the terminal. In particular, the Deep Thought polynomials are
printed in human-readable form. This function is also called by the method of Display for a DTOb].

24.2 DTP_pols2GAPpols

> DTP_pols2GAPpols (DTUbj) (function)

Returns: list

Converts the Deep Thought polynomials stored in DTObj [PC_DTPPolynomials] to GAP poly-
nomials and returns them in a list together with their polynomial ring.
Example
gap> coll := FromTheLeftCollector(4);;
gap> SetConjugate(coll, 2, 1, [2, 1, 3, 2]);
gap> SetConjugate(coll, 3, 1, [3, 1, 4, 1]);
gap> SetConjugate(coll, 3, 2, [3, 1, 4, 5]);
gap> UpdatePolycyclicCollector(coll);
gap> DTObj := DTP_DTObjFromCollector(coll);
<DTObj>
gap> Display(DTObj) ;
Polynomials f_rs for s = 1:
f1,s =X1+Y_1
f 2,s = X2
f3,s=X3+2xX2Y.1
f 4,s =X 4+ X 3Y_1+ 2 * X_2 Binomial(Y_1, 2) + 10 * Binomial(X_2, 2) Y_1
Polynomials f_rs for s = 2:
f_1,s = X_1
f2,s =X2+Y.2

DeepThought

f_3,s = X_3
f4,s =X 4+5*X3Y.2
Polynomials f_rs for s = 3:

f_1,s = X_1

f_2,s = X_2

£ 3,s =X_.3+Y.3

f 4,s = X_4

Polynomials f_rs for s = 4:
f_1,s = X_1

f_2,s = X_2

£f_3,s = X_3

f4,s =X 4+Y 4
gap> DTObj := DTP_DTObjFromCollector(coll, false);
<DTObj>
gap> Display(DTObj) ;
f1=X_1+Y1
=X_2+Y.2
=X3+Y3+2xX2Y.1
=X 4+ Y4+ X 3Y.1+ 2% X_2 Binomial(Y_1, 2) +
10 * Binomial(X_2, 2) Y1 +5 % X 3 Y 2+ 10 * X_2 Y_1Y_2
gap> DTP_pols2GAPpols(DTObj) ;
[[xl+yl, x2+y2, 2*x2*yl+x3+y3,
B5xx272%y1+x2%y1~2+10%x 2%y 1xy2-6%x2*y1+x3*y1+5xx3*xy2+x4+y4 1],
Rationals[x1,x2,x3,x4,y1,y2,y3,y4]]

f_
f_
f_

D wWw N

10

References

[LGS98] C. Leedham-Green and L. Soicher. Symbolic collection using deep thought. LMS J. Comp.
Math. 1, pages 9-24, 1998. 3

11

Index

DTP_Display_DTO0bj, 9
DTP_DTapplicability, 5
DTP_DTObjFromCollector, 5
DTP_Exp, 6

DTP_Inverse, 6
DTP_IsInNormalForm, 6
DTP_Multiply, 6
DTP_Multiply_r, 6
DTP_Multiply_rs,7
DTP_NormalForm, 7
DTP_Order, 7
DTP_PCP_Exp, 8
DTP_PCP_Inverse, 8
DTP_PCP_NormalForm, 8
DTP_PCP_Order, 8
DTP_PCP_SolveEquation, 8
DTP_pols2GAPpols, 9
DTP_SolveEquation, 7

12

	The Deep Thought algorithm
	Category DTObj

	Using Deep Thought functions
	Computing Deep Thought polynomials
	Computations with Deep Thought polynomials
	Computations with pcp-elements
	Accessing Deep Thought polynomials

	References
	Index

